These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14683115)

  • 1. Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics.
    Scully MO; Kocharovsky VV; Belyanin A; Fry E; Capasso F
    Phys Rev Lett; 2003 Dec; 91(24):243004. PubMed ID: 14683115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics".
    Hu BL; Roura A
    Phys Rev Lett; 2004 Sep; 93(12):129301; author reply 129302. PubMed ID: 15447315
    [No Abstract]   [Full Text] [Related]  

  • 3. Proposal for Observing the Unruh Effect using Classical Electrodynamics.
    Cozzella G; Landulfo AGS; Matsas GEA; Vanzella DAT
    Phys Rev Lett; 2017 Apr; 118(16):161102. PubMed ID: 28474935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and nonthermal signatures of the Unruh effect in Casimir-Polder forces.
    Marino J; Noto A; Passante R
    Phys Rev Lett; 2014 Jul; 113(2):020403. PubMed ID: 25062144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of photon number states on demand via cavity quantum electrodynamics.
    Brattke S; Varcoe BT; Walther H
    Phys Rev Lett; 2001 Apr; 86(16):3534-7. PubMed ID: 11328016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezed Light Induced Symmetry Breaking Superradiant Phase Transition.
    Zhu CJ; Ping LL; Yang YP; Agarwal GS
    Phys Rev Lett; 2020 Feb; 124(7):073602. PubMed ID: 32142326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bose-Glass phases of ultracold atoms due to cavity backaction.
    Habibian H; Winter A; Paganelli S; Rieger H; Morigi G
    Phys Rev Lett; 2013 Feb; 110(7):075304. PubMed ID: 25166381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Unruh effect in hyperbolic metamaterial waveguides.
    Smolyaninov II
    Opt Lett; 2019 May; 44(9):2224-2227. PubMed ID: 31042189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unruh and Cherenkov Radiation from a Negative Frequency Perspective.
    Svidzinsky A; Azizi A; Ben-Benjamin JS; Scully MO; Unruh W
    Phys Rev Lett; 2021 Feb; 126(6):063603. PubMed ID: 33635688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavity Optimization for Unruh Effect at Small Accelerations.
    Stargen DJ; Lochan K
    Phys Rev Lett; 2022 Sep; 129(11):111303. PubMed ID: 36154420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Acceleration-Enhanced Vacuum Fluctuations with Atoms Inside a Cavity.
    Lochan K; Ulbricht H; Vinante A; Goyal SK
    Phys Rev Lett; 2020 Dec; 125(24):241301. PubMed ID: 33412056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-to-classical transition in cavity quantum electrodynamics.
    Fink JM; Steffen L; Studer P; Bishop LS; Baur M; Bianchetti R; Bozyigit D; Lang C; Filipp S; Leek PJ; Wallraff A
    Phys Rev Lett; 2010 Oct; 105(16):163601. PubMed ID: 21230970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network.
    Eremeev V; Ciobanu N; Orszag M
    Opt Lett; 2014 May; 39(9):2668-71. PubMed ID: 24784073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics.
    Cimmarusti AD; Yan Z; Patterson BD; Corcos LP; Orozco LA; Deffner S
    Phys Rev Lett; 2015 Jun; 114(23):233602. PubMed ID: 26196802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofriction in Cavity Quantum Electrodynamics.
    Fogarty T; Cormick C; Landa H; Stojanović VM; Demler E; Morigi G
    Phys Rev Lett; 2015 Dec; 115(23):233602. PubMed ID: 26684118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture).
    Haroche S
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10159-78. PubMed ID: 24038846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems.
    Afshar V S; Henderson MR; Greentree AD; Gibson BC; Monro TM
    Opt Express; 2014 May; 22(9):11301-11. PubMed ID: 24921827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.