These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14683233)

  • 21. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.
    Morzyński P; Bober M; Bartoszek-Bober D; Nawrocki J; Krehlik P; Śliwczyński Ł; Lipiński M; Masłowski P; Cygan A; Dunst P; Garus M; Lisak D; Zachorowski J; Gawlik W; Radzewicz C; Ciuryło R; Zawada M
    Sci Rep; 2015 Dec; 5():17495. PubMed ID: 26639347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Narrow line photoassociation in an optical lattice.
    Zelevinsky T; Boyd MM; Ludlow AD; Ido T; Ye J; Ciuryło R; Naidon P; Julienne PS
    Phys Rev Lett; 2006 May; 96(20):203201. PubMed ID: 16803171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extended ultrahigh-Q-cavity diode laser.
    Xie Z; Liang W; Savchenkov AA; Lim J; Burkhart J; McDonald M; Zelevinsky T; Ilchenko VS; Matsko AB; Maleki L; Wong CW
    Opt Lett; 2015 Jun; 40(11):2596-9. PubMed ID: 26030566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.
    Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL
    Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precision spectroscopy and density-dependent frequency shifts in ultracold Sr.
    Ido T; Loftus TH; Boyd MM; Ludlow AD; Holman KW; Ye J
    Phys Rev Lett; 2005 Apr; 94(15):153001. PubMed ID: 15904137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carrier thermometry of cold ytterbium atoms in an optical lattice clock.
    Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X
    Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magic polarization for optical trapping of atoms without Stark-induced dephasing.
    Kim H; Han HS; Cho D
    Phys Rev Lett; 2013 Dec; 111(24):243004. PubMed ID: 24483653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.
    Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL
    Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.
    Mukaiyama T; Katori H; Ido T; Li Y; Kuwata-Gonokami M
    Phys Rev Lett; 2003 Mar; 90(11):113002. PubMed ID: 12688925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.