These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514 [TBL] [Abstract][Full Text] [Related]
25. A superradiant clock laser on a magic wavelength optical lattice. Maier T; Kraemer S; Ostermann L; Ritsch H Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521 [TBL] [Abstract][Full Text] [Related]
26. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link. Morzyński P; Bober M; Bartoszek-Bober D; Nawrocki J; Krehlik P; Śliwczyński Ł; Lipiński M; Masłowski P; Cygan A; Dunst P; Garus M; Lisak D; Zachorowski J; Gawlik W; Radzewicz C; Ciuryło R; Zawada M Sci Rep; 2015 Dec; 5():17495. PubMed ID: 26639347 [TBL] [Abstract][Full Text] [Related]
27. An optical lattice clock. Takamoto M; Hong FL; Higashi R; Katori H Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252 [TBL] [Abstract][Full Text] [Related]
28. Micromagic clock: microwave clock based on atoms in an engineered optical lattice. Beloy K; Derevianko A; Dzuba VA; Flambaum VV Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262 [TBL] [Abstract][Full Text] [Related]
29. Narrow line photoassociation in an optical lattice. Zelevinsky T; Boyd MM; Ludlow AD; Ido T; Ye J; Ciuryło R; Naidon P; Julienne PS Phys Rev Lett; 2006 May; 96(20):203201. PubMed ID: 16803171 [TBL] [Abstract][Full Text] [Related]
31. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition. Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619 [TBL] [Abstract][Full Text] [Related]
32. Precision spectroscopy and density-dependent frequency shifts in ultracold Sr. Ido T; Loftus TH; Boyd MM; Ludlow AD; Holman KW; Ye J Phys Rev Lett; 2005 Apr; 94(15):153001. PubMed ID: 15904137 [TBL] [Abstract][Full Text] [Related]
33. Carrier thermometry of cold ytterbium atoms in an optical lattice clock. Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962 [TBL] [Abstract][Full Text] [Related]
34. Magic polarization for optical trapping of atoms without Stark-induced dephasing. Kim H; Han HS; Cho D Phys Rev Lett; 2013 Dec; 111(24):243004. PubMed ID: 24483653 [TBL] [Abstract][Full Text] [Related]
35. Photoionization cross sections of ultracold Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862 [TBL] [Abstract][Full Text] [Related]
36. Hyperpolarizability effects in a Sr optical lattice clock. Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730 [TBL] [Abstract][Full Text] [Related]
37. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb. Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880 [TBL] [Abstract][Full Text] [Related]
38. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165 [TBL] [Abstract][Full Text] [Related]
39. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Mukaiyama T; Katori H; Ido T; Li Y; Kuwata-Gonokami M Phys Rev Lett; 2003 Mar; 90(11):113002. PubMed ID: 12688925 [TBL] [Abstract][Full Text] [Related]