These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14683270)

  • 1. Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods.
    Htoon H; Hollingsworth JA; Dickerson R; Klimov VI
    Phys Rev Lett; 2003 Nov; 91(22):227401. PubMed ID: 14683270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Aspect Ratio on Multiparticle Auger Recombination in Single-Walled Carbon Nanotubes: Time Domain Atomistic Simulation.
    Pal S; Casanova D; Prezhdo OV
    Nano Lett; 2018 Jan; 18(1):58-63. PubMed ID: 29190106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-Hole Correlations Govern Auger Recombination in Nanostructures.
    Philbin JP; Rabani E
    Nano Lett; 2018 Dec; 18(12):7889-7895. PubMed ID: 30403875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between Auger and ionization processes in nanocrystal quantum dots.
    Kraus RM; Lagoudakis PG; Müller J; Rogach AL; Lupton JM; Feldmann J; Talapin DV; Weller H
    J Phys Chem B; 2005 Oct; 109(39):18214-7. PubMed ID: 16853341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantized bimolecular auger recombination of excitons in single-walled carbon nanotubes.
    Huang L; Krauss TD
    Phys Rev Lett; 2006 Feb; 96(5):057407. PubMed ID: 16486987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods.
    Padilha LA; Stewart JT; Sandberg RL; Bae WK; Koh WK; Pietryga JM; Klimov VI
    Nano Lett; 2013 Mar; 13(3):1092-9. PubMed ID: 23360573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantization of multiparticle auger rates in semiconductor quantum dots.
    Klimov VI; Mikhailovsky AA; McBranch DW; Leatherdale CA; Bawendi MG
    Science; 2000 Feb; 287(5455):1011-3. PubMed ID: 10669406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals.
    Granados Del Águila A; Jha B; Pietra F; Groeneveld E; de Mello Donegá C; Maan JC; Vanmaekelbergh D; Christianen PC
    ACS Nano; 2014 Jun; 8(6):5921-31. PubMed ID: 24861569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical gain and stimulated emission in nanocrystal quantum dots.
    Klimov VI; Mikhailovsky AA; Xu S; Malko A; Hollingsworth JA; Leatherdale CA; Eisler H; Bawendi MG
    Science; 2000 Oct; 290(5490):314-7. PubMed ID: 11030645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Auger process in few-layer PtSe
    Shin HJ; Bae S; Sim S
    Nanoscale; 2020 Nov; 12(43):22185-22191. PubMed ID: 33135719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auger Heating and Thermal Dissipation in Zero-Dimensional CdSe Nanocrystals Examined Using Femtosecond Stimulated Raman Spectroscopy.
    Harvey SM; Phelan BT; Hannah DC; Brown KE; Young RM; Kirschner MS; Wasielewski MR; Schaller RD
    J Phys Chem Lett; 2018 Aug; 9(16):4481-4487. PubMed ID: 30011208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Transfer of Biexcitons in a Single Semiconductor Nanocrystal.
    Huang X; Xu Q; Zhang C; Wang X; Xiao M
    Nano Lett; 2016 Apr; 16(4):2492-6. PubMed ID: 27020482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Dissociation and Reduced Auger Recombination of Multiple Excitons in Closely Packed PbS Nanocrystal Thin Films.
    Nishihara T; Tahara H; Okano M; Ono M; Kanemitsu Y
    J Phys Chem Lett; 2015 Apr; 6(8):1327-32. PubMed ID: 26263131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals.
    Klimov VI
    Annu Rev Phys Chem; 2007; 58():635-73. PubMed ID: 17163837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.