These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 14683438)

  • 1. New fluorescence techniques for high-throughput drug discovery.
    Jäger S; Brand L; Eggeling C
    Curr Pharm Biotechnol; 2003 Dec; 4(6):463-76. PubMed ID: 14683438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data reduction methods for application of fluorescence correlation spectroscopy to pharmaceutical drug discovery.
    Davis LM; Williams PE; Ball DA; Swift KM; Matayoshi ED
    Curr Pharm Biotechnol; 2003 Dec; 4(6):451-62. PubMed ID: 14683437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technological advances in high-throughput screening.
    Liu B; Li S; Hu J
    Am J Pharmacogenomics; 2004; 4(4):263-76. PubMed ID: 15287820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommendations for the reduction of compound artifacts in time-resolved fluorescence resonance energy transfer assays.
    Imbert PE; Unterreiner V; Siebert D; Gubler H; Parker C; Gabriel D
    Assay Drug Dev Technol; 2007 Jun; 5(3):363-72. PubMed ID: 17638536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient method for the detection and elimination of systematic error in high-throughput screening.
    Makarenkov V; Zentilli P; Kevorkov D; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2007 Jul; 23(13):1648-57. PubMed ID: 17463024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay.
    Takamiya M; Sakurai M; Teranishi F; Ikeda T; Kamiyama T; Asai A
    Biochem Biophys Res Commun; 2016 Nov; 480(4):721-726. PubMed ID: 27793673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of NMR screening in drug discovery.
    Fejzo J; Lepre C; Xie X
    Curr Top Med Chem; 2003; 3(1):81-97. PubMed ID: 12570779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modular, fully integrated ultra-high-throughput screening system based on confocal fluorescence analysis techniques.
    Jäger S; Garbow N; Kirsch A; Preckel H; Gandenberger FU; Herrenknecht K; Rüdiger M; Hutchinson JP; Bingham RP; Ramon F; Bardera A; Martin J
    J Biomol Screen; 2003 Dec; 8(6):648-59. PubMed ID: 14711390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ID NMR Methods in ligand-receptor interactions.
    Zartler ER; Yan J; Mo H; Kline AD; Shapiro MJ
    Curr Top Med Chem; 2003; 3(1):25-37. PubMed ID: 12577989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-bead, single-molecule, single-cell fluorescence: technologies for drug screening and target validation.
    Hintersteiner M; Auer M
    Ann N Y Acad Sci; 2008; 1130():1-11. PubMed ID: 18596327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric techniques for label-free high-throughput screening in drug discovery.
    Roddy TP; Horvath CR; Stout SJ; Kenney KL; Ho PI; Zhang JH; Vickers C; Kaushik V; Hubbard B; Wang YK
    Anal Chem; 2007 Nov; 79(21):8207-13. PubMed ID: 17902631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule detection technologies in miniaturized high throughput screening: binding assays for g protein-coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy.
    Rüdiger M; Haupts U; Moore KJ; Pope AJ
    J Biomol Screen; 2001 Feb; 6(1):29-37. PubMed ID: 11679163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of miniaturized time-resolved fluorescence resonance energy transfer and enzyme-coupled luciferase high-throughput screening assays to discover inhibitors of Rho-kinase II (ROCK-II).
    Schröter T; Minond D; Weiser A; Dao C; Habel J; Spicer T; Chase P; Baillargeon P; Scampavia L; Schürer S; Chung C; Mader C; Southern M; Tsinoremas N; LoGrasso P; Hodder P
    J Biomol Screen; 2008 Jan; 13(1):17-28. PubMed ID: 18227223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.
    Eggeling C; Kask P; Winkler D; Jäger S
    Biophys J; 2005 Jul; 89(1):605-18. PubMed ID: 15849243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput screening of protein formulation stability: practical considerations.
    Capelle MA; Gurny R; Arvinte T
    Eur J Pharm Biopharm; 2007 Feb; 65(2):131-48. PubMed ID: 17107777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial guesses generation for Fluorescence Intensity Distribution Analysis.
    Skakun VV; Novikov EG; Apanasovich VV; Tanke HJ; Deelder AM; Mayboroda OA
    Eur Biophys J; 2006 May; 35(5):410-23. PubMed ID: 16568269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence polarization and time-resolved fluorescence resonance energy transfer techniques for PI3K assays.
    Horiuchi KY; Ma H
    Methods Mol Biol; 2009; 572():161-76. PubMed ID: 20694691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal fluorescence microscopy for high-throughput screening of G-protein coupled receptors.
    Heilker R; Zemanova L; Valler MJ; Nienhaus GU
    Curr Med Chem; 2005; 12(22):2551-9. PubMed ID: 16248815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing False Positives through the Application of Fluorescence Lifetime Technology: A Comparative Study Using TYK2 Kinase as a Model System.
    Greenhough LA; Clarke G; Phillipou AN; Mazani F; Karamshi B; Rowe S; Rowland P; Messenger C; Haslam CP; Bingham RP; Craggs PD
    SLAS Discov; 2021 Jun; 26(5):663-675. PubMed ID: 33783261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-based assays.
    An WF
    Methods Mol Biol; 2009; 486():97-107. PubMed ID: 19347618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.