BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1468384)

  • 21. Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension.
    Jones SC; Easley KA; Radinsky CR; Chyatte D; Furlan AJ; Perez-Trepichio AD
    J Cereb Blood Flow Metab; 2003 Sep; 23(9):1085-95. PubMed ID: 12973025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-spectral analysis of cerebral autoregulation dynamics in high risk preterm infants during the perinatal period.
    Menke J; Michel E; Hillebrand S; von Twickel J; Jorch G
    Pediatr Res; 1997 Nov; 42(5):690-9. PubMed ID: 9357945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tocolytic indomethacin: effects on neonatal haemodynamics and cerebral autoregulation in the preterm newborn.
    Baerts W; van Bel F; Thewissen L; Derks JB; Lemmers PM
    Arch Dis Child Fetal Neonatal Ed; 2013 Sep; 98(5):F419-23. PubMed ID: 23482639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy.
    Wong FY; Leung TS; Austin T; Wilkinson M; Meek JH; Wyatt JS; Walker AM
    Pediatrics; 2008 Mar; 121(3):e604-11. PubMed ID: 18250118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical NOS inhibition raises the lower limit of cerebral blood flow-arterial pressure autoregulation.
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Perez-Trepichio AD
    Am J Physiol; 1999 Apr; 276(4):H1253-62. PubMed ID: 10199850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure of blood vessels in the germinal matrix and the autoregulation of cerebral blood flow in premature infants.
    Haruda FD
    Pediatrics; 2001 Oct; 108(4):1050-1. PubMed ID: 11589213
    [No Abstract]   [Full Text] [Related]  

  • 27. Cerebral oxygenation is highly sensitive to blood pressure variability in sick preterm infants.
    Wong FY; Silas R; Hew S; Samarasinghe T; Walker AM
    PLoS One; 2012; 7(8):e43165. PubMed ID: 22905222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cerebral blood flow reactivity in spontaneously breathing, preterm infants shortly after birth.
    Pryds O; Andersen GE; Friis-Hansen B
    Acta Paediatr Scand; 1990 Apr; 79(4):391-6. PubMed ID: 2112295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates: evaluation of a noninvasive method.
    Hahn GH
    Dan Med J; 2013 Apr; 60(4):B4628. PubMed ID: 23651728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants.
    Tsuji M; Saul JP; du Plessis A; Eichenwald E; Sobh J; Crocker R; Volpe JJ
    Pediatrics; 2000 Oct; 106(4):625-32. PubMed ID: 11015501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Borderline hypotension: how does it influence cerebral regional tissue oxygenation in preterm infants?
    Binder-Heschl C; Urlesberger B; Schwaberger B; Koestenberger M; Pichler G
    J Matern Fetal Neonatal Med; 2016; 29(14):2341-6. PubMed ID: 26381128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants.
    Soul JS; Hammer PE; Tsuji M; Saul JP; Bassan H; Limperopoulos C; Disalvo DN; Moore M; Akins P; Ringer S; Volpe JJ; Trachtenberg F; du Plessis AJ
    Pediatr Res; 2007 Apr; 61(4):467-73. PubMed ID: 17515873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postnatal changes in intracranial blood flow velocity in preterm infants.
    Winberg P; Sonesson SE; Lundell BP
    Acta Paediatr Scand; 1990 Dec; 79(12):1150-5. PubMed ID: 2085101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extended model of impaired cerebral autoregulation in preterm infants: Heuristic feedback control.
    Botkin ND; Turova VL; Kovtanyuk AE; Sidorenko IN; Lampe R
    Math Biosci Eng; 2019 Mar; 16(4):2334-2352. PubMed ID: 31137216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebral pressure autoregulation and vasoreactivity in the newborn rat.
    Pryds A; Tønnesen J; Pryds O; Knudsen GM; Greisen G
    Pediatr Res; 2005 Feb; 57(2):294-8. PubMed ID: 15585687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebral blood flow, PaCO2 changes, and visual evoked potentials in mechanically ventilated, preterm infants.
    Greisen G; Trojaborg W
    Acta Paediatr Scand; 1987 May; 76(3):394-400. PubMed ID: 3604659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcranial Doppler identification of changing autoregulatory thresholds after autoregulatory impairment.
    Lewis SB; Wong ML; Bannan PE; Piper IR; Reilly PL
    Neurosurgery; 2001 Feb; 48(2):369-75; discussion 375-6. PubMed ID: 11220381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aminophylline reduces cerebral blood flow in stable, preterm infants without affecting the visual evoked potential.
    Pryds O; Schneider S
    Eur J Pediatr; 1991 Mar; 150(5):366-9. PubMed ID: 2044613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CBF reactivity to changes in MAP (cerebral autoregulation) or CO2 (CO2 reactivity) is lost in hypotensive, ventilated, preterm infants.
    Vavilala MS; Lam AM
    Pediatr Res; 2004 May; 55(5):898; author reply 898-9. PubMed ID: 15100394
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of red cell transfusion on cardiac output and blood flow velocities in cerebral and gastrointestinal arteries in premature infants.
    Nelle M; Höcker C; Zilow EP; Linderkamp O
    Arch Dis Child Fetal Neonatal Ed; 1994 Jul; 71(1):F45-8. PubMed ID: 8092871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.