BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 14685259)

  • 1. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
    Lewis HA; Buchanan SG; Burley SK; Conners K; Dickey M; Dorwart M; Fowler R; Gao X; Guggino WB; Hendrickson WA; Hunt JF; Kearins MC; Lorimer D; Maloney PC; Post KW; Rajashankar KR; Rutter ME; Sauder JM; Shriver S; Thibodeau PH; Thomas PJ; Zhang M; Zhao X; Emtage S
    EMBO J; 2004 Jan; 23(2):282-93. PubMed ID: 14685259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain-domain associations in cystic fibrosis transmembrane conductance regulator.
    Wang W; He Z; O'Shaughnessy TJ; Rux J; Reenstra WW
    Am J Physiol Cell Physiol; 2002 May; 282(5):C1170-80. PubMed ID: 11940532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.
    Vernon RM; Chong PA; Lin H; Yang Z; Zhou Q; Aleksandrov AA; Dawson JE; Riordan JR; Brouillette CG; Thibodeau PH; Forman-Kay JD
    J Biol Chem; 2017 Aug; 292(34):14147-14164. PubMed ID: 28655774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE
    Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover.
    Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR
    J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.
    Ehrhardt A; Chung WJ; Pyle LC; Wang W; Nowotarski K; Mulvihill CM; Ramjeesingh M; Hong J; Velu SE; Lewis HA; Atwell S; Aller S; Bear CE; Lukacs GL; Kirk KL; Sorscher EJ
    J Biol Chem; 2016 Jan; 291(4):1854-1865. PubMed ID: 26627831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
    Gross CH; Abdul-Manan N; Fulghum J; Lippke J; Liu X; Prabhakar P; Brennan D; Willis MS; Faerman C; Connelly P; Raybuck S; Moore J
    J Biol Chem; 2006 Feb; 281(7):4058-68. PubMed ID: 16361259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R-Domain Phosphorylation by Protein Kinase A Stimulates Dissociation of Unhydrolyzed ATP from the First Nucleotide-Binding Site of the Cystic Fibrosis Transmembrane Conductance Regulator.
    Aleksandrov LA; Fay JF; Riordan JR
    Biochemistry; 2018 Aug; 57(34):5073-5075. PubMed ID: 30109929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications.
    Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR
    Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator.
    Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR
    J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach.
    Huang SY; Bolser D; Liu HY; Hwang TC; Zou X
    J Mol Graph Model; 2009 Apr; 27(7):822-8. PubMed ID: 19167254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels.
    Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC
    J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.