These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14685279)

  • 1. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
    Graumann J; Lilie H; Tang X; Tucker KA; Hoffmann JH; Vijayalakshmi J; Saper M; Bardwell JC; Jakob U
    Structure; 2001 May; 9(5):377-87. PubMed ID: 11377198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond transcription--new mechanisms for the regulation of molecular chaperones.
    Winter J; Jakob U
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
    Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U
    J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox-switch domain of Hsp33 functions as dual stress sensor.
    Ilbert M; Horst J; Ahrens S; Winter J; Graf PC; Lilie H; Jakob U
    Nat Struct Mol Biol; 2007 Jun; 14(6):556-63. PubMed ID: 17515905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperone activity with a redox switch.
    Jakob U; Muse W; Eser M; Bardwell JC
    Cell; 1999 Feb; 96(3):341-52. PubMed ID: 10025400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
    Jo KS; Kim JH; Ryu KS; Kang JS; Wang CY; Lee YS; Seo MD; Lee YH; Won HS
    J Mol Biol; 2019 Mar; 431(7):1468-1480. PubMed ID: 30822413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.
    Kim SJ; Jeong DG; Chi SW; Lee JS; Ryu SE
    Nat Struct Biol; 2001 May; 8(5):459-66. PubMed ID: 11323724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone.
    Barbirz S; Jakob U; Glocker MO
    J Biol Chem; 2000 Jun; 275(25):18759-66. PubMed ID: 10764757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.
    Segal N; Shapira M
    Plant J; 2015 Jun; 82(5):850-60. PubMed ID: 25892083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.
    Won HS; Low LY; Guzman RD; Martinez-Yamout M; Jakob U; Dyson HJ
    J Mol Biol; 2004 Aug; 341(4):893-9. PubMed ID: 15328602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J; Mukhergee MK; Graumann J; Jakob U; Saper MA
    Structure; 2001 May; 9(5):367-75. PubMed ID: 11377197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.