BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1468577)

  • 1. Enhanced acetylcholine secretion in neuroblastoma x glioma hybrid NG108-15 cells transfected with rat choline acetyltransferase cDNA.
    Kimura Y; Oda Y; Deguchi T; Higashida H
    FEBS Lett; 1992 Dec; 314(3):409-12. PubMed ID: 1468577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete acetylcholine release from neuroblastoma or hybrid cells overexpressing choline acetyltransferase into the neuromuscular synaptic cleft.
    Zhong ZG; Kimura Y; Noda M; Misawa H; Higashida H
    Neurosci Res; 1995 Mar; 22(1):81-8. PubMed ID: 7792084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of choline acetyltransferase reconstitutes discrete acetylcholine release in some but not all synapse formation-defective neuroblastoma cells.
    Zhong ZG; Misawa H; Furuya S; Kimura Y; Noda M; Yokoyama S; Higashida H
    J Physiol Paris; 1995; 89(3):137-45. PubMed ID: 7581303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission.
    Chen XL; Zhong ZG; Yokoyama S; Bark C; Meister B; Berggren PO; Roder J; Higashida H; Jeromin A
    J Physiol; 2001 May; 532(Pt 3):649-59. PubMed ID: 11313436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltranferase cDNAs.
    Bloc A; Bugnard E; Dunant Y; Falk-Vairant J; Israël M; Loctin F; Roulet E
    Eur J Neurosci; 1999 May; 11(5):1523-34. PubMed ID: 10215905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine release by bradykinin, inositol 1,4,5-trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells.
    Higashida H
    J Physiol; 1988 Mar; 397():209-22. PubMed ID: 2842493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-independent release of acetylcholine from stable cell lines expressing mouse choline acetyltransferase cDNA.
    Misawa H; Takahashi R; Deguchi T
    J Neurochem; 1994 Feb; 62(2):465-70. PubMed ID: 8294908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of adhesion molecule L1 in NG108-15 neuroblastoma X glioma hybrid cells enhances dibutyryl cyclic AMP-induced neurite outgrowth and functional synapse formation with myotubes.
    Zhong ZG; Yokoyama S; Noda M; Higashida H
    J Neurochem; 1997 Jun; 68(6):2291-9. PubMed ID: 9166721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular acetylcholine content and neuronal differentiation.
    Bignami F; Bevilacqua P; Biagioni S; De Jaco A; Casamenti F; Felsani A; Augusti-Tocco G
    J Neurochem; 1997 Oct; 69(4):1374-81. PubMed ID: 9326265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of choline acetyltransferase gene by cyclic AMP.
    Misawa H; Takahashi R; Deguchi T
    J Neurochem; 1993 Apr; 60(4):1383-7. PubMed ID: 8384248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of synaptic transmission by prostaglandin D2 at synapses between NG108-15 hybrid and muscle cells.
    Higashida H; Nakagawa Y; Miki N
    Brain Res; 1984 Mar; 295(1):113-9. PubMed ID: 6324947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bradykinin-evoked acetylcholine release via inositol trisphosphate-dependent elevation in free calcium in neuroblastoma x glioma hybrid NG108-15 cells.
    Ogura A; Myojo Y; Higashida H
    J Biol Chem; 1990 Feb; 265(6):3577-84. PubMed ID: 2303464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between cholinergic phenotype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin.
    Bielarczyk H; Tomaszewicz M; Madziar B; Cwikowska J; Pawełczyk T; Szutowicz A
    J Neurosci Res; 2003 Sep; 73(5):717-21. PubMed ID: 12929139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of acetylcholinesterase and voltage-gated Na(+) channels in choline acetyltransferase- transfected neuroblastoma clones.
    De Jaco A; Ajmone-Cat MA; Baldelli P; Carbone E; Augusti-Tocco G; Biagioni S
    J Neurochem; 2000 Sep; 75(3):1123-31. PubMed ID: 10936194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological changes related to reconstituted acetylcholine release in a release-deficient cell line.
    Bugnard E; Sors P; Roulet E; Bloc A; Loctin F; Dunant Y
    Neuroscience; 1999; 94(1):329-38. PubMed ID: 10613523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoinositides and synaptic function in NG108-15 neuroblastoma x glioma hybrid cells.
    Higashida H; Yokoyama S; Hoshi N; Myojo Y; Kawamura T; Ito Y; Hashii M; Sagara J; Furuya K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 98(1):129-37. PubMed ID: 1673906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choline uptake by the neuroblastoma x glioma hybrid, NG108-15.
    McGee R
    J Neurochem; 1980 Oct; 35(4):829-37. PubMed ID: 6256499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of P2X7 (P2Z) receptor in N18TG-2 cells and NG108-15 cells.
    Kaiho H; Matsuoka I; Kimura J; Nakanishi H
    J Neurochem; 1998 Mar; 70(3):951-7. PubMed ID: 9489714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine accumulation and release by hybrid NG108-15, glioma and neuroblastoma cells--role of a 16kDa membrane protein in release.
    Israël M; Lesbats B; Synguelakis M; Joliot A
    Neurochem Int; 1994 Aug; 25(2):103-9. PubMed ID: 7994191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense agrin cDNA transfection blocks neuroblastoma cell-induced acetylcholine receptor aggregation when co-cultured with myotubes.
    Pun S; Tsim KW
    Mol Cell Neurosci; 1997; 10(1-2):87-99. PubMed ID: 9361290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.