BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 14685895)

  • 1. Neuropathological evaluation of the diencephalon, basal ganglia and upper brainstem in alobar holoprosencephaly.
    Hayashi M; Araki S; Kumada S; Itoh M; Morimatsu Y; Matsuyama H
    Acta Neuropathol; 2004 Mar; 107(3):190-6. PubMed ID: 14685895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem and basal ganglia lesions in xeroderma pigmentosum group A.
    Hayashi M; Araki S; Kohyama J; Shioda K; Fukatsu R; Tamagawa K
    J Neuropathol Exp Neurol; 2004 Oct; 63(10):1048-57. PubMed ID: 15535132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pedunculopontine nucleus in developmental disorders of the basal ganglia.
    Anzai Y; Hayashi M; Ohya T; Yokota S
    Neuropathology; 2008 Jun; 28(3):258-63. PubMed ID: 18194143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropathological analysis of the brainstem and cerebral cortex lesions on epileptogenesis in hereditary dentatorubral-pallidoluysian atrophy.
    Hayashi M; Kumada S; Shioda K; Fukatsu R
    Brain Dev; 2007 Sep; 29(8):473-81. PubMed ID: 17307319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholaminergic neurons in the diencephalon and basal ganglia of SIDS.
    Ozawa Y; Obonai T; Itoh M; Aoki Y; Funayama M; Takashima S
    Pediatr Neurol; 1999 Jul; 21(1):471-5. PubMed ID: 10428433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilirubin encephalopathy: a study of neuronal subpopulations and neurodegenerative mechanisms in 12 autopsy cases.
    Hachiya Y; Hayashi M
    Brain Dev; 2008 Apr; 30(4):269-78. PubMed ID: 17937977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of dopamine receptor and neuropeptide expression in the basal ganglia of monkeys treated with MPTP.
    Betarbet R; Greenamyre JT
    Exp Neurol; 2004 Oct; 189(2):393-403. PubMed ID: 15380489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic holoprosencephaly: pathology and phenotypic variability.
    Yamada S
    Congenit Anom (Kyoto); 2006 Dec; 46(4):164-71. PubMed ID: 17096815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal ganglia organization in amphibians: chemoarchitecture.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1998 Mar; 392(3):285-312. PubMed ID: 9511919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide B immunoreactivity in the central nervous system of the rat.
    Dun SL; Brailoiu GC; Mizuo K; Yang J; Chang JK; Dun NJ
    Brain Res; 2005 May; 1045(1-2):157-63. PubMed ID: 15910774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropathology of holoprosencephaly.
    Marcorelles P; Laquerriere A
    Am J Med Genet C Semin Med Genet; 2010 Feb; 154C(1):109-19. PubMed ID: 20104606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of neuropeptides with calcium-binding proteins in the claustral interneurons during postnatal development of the rat.
    Kowiański P; Dziewiatkowski J; Moryś JM; Majak K; Wójcik S; Edelstein LR; Lietzau G; Moryś J
    Brain Res Bull; 2009 Sep; 80(3):100-6. PubMed ID: 19576270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of protein kinase C-substrate mRNAs in the basal ganglia of adult and infant macaque monkeys.
    Higo N; Oishi T; Yamashita A; Murata Y; Matsuda K; Hayashi M
    J Comp Neurol; 2006 Dec; 499(4):662-76. PubMed ID: 17029258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical analysis of brainstem lesions in infantile spasms.
    Hayashi M; Itoh M; Araki S; Kumada S; Tanuma N; Kohji T; Kohyama J; Iwakawa Y; Satoh J; Morimatsu Y
    Neuropathology; 2000 Dec; 20(4):297-303. PubMed ID: 11211054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holoprosencephaly spectrum among Egyptian patients: clinical and cytogenetic study.
    El-Bassyouni HT; Abdel Salam GH; Saleem SN; Kayed HF; Shehab MI; Eid MM; Zaki ME; Zaki MS
    Genet Couns; 2014; 25(4):369-81. PubMed ID: 25804014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of secretoneurin-like immunoreactivity in comparison with substance P- and enkephalin-like immunoreactivities in various human forebrain regions.
    Marksteiner J; Saria A; Kirchmair R; Pycha R; Benesch H; Fischer-Colbrie R; Haring C; Maier H; Ransmayr G
    Eur J Neurosci; 1993 Dec; 5(12):1573-85. PubMed ID: 7510203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular localization of GABA receptor alpha subunit immunoreactivity in the rat hypothalamus: relationship with neurones containing orexigenic or anorexigenic peptides.
    Bäckberg M; Ultenius C; Fritschy JM; Meister B
    J Neuroendocrinol; 2004 Jul; 16(7):589-604. PubMed ID: 15214862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orexin-A immunoreactive cells and fibers in the central nervous system of the axolotl brain and their association with tyrosine hydroxylase and serotonin immunoreactive somata.
    Suzuki H; Kubo Y; Yamamoto T
    J Chem Neuroanat; 2008 Jul; 35(4):295-305. PubMed ID: 18378425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced expression of neuropeptides can be related to respiratory disturbances in Rett syndrome.
    Saito Y; Ito M; Ozawa Y; Matsuishi T; Hamano K; Takashima S
    Brain Dev; 2001 Dec; 23 Suppl 1():S122-6. PubMed ID: 11738857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function.
    Zheng H; Patterson LM; Berthoud HR
    J Comp Neurol; 2005 May; 485(2):127-42. PubMed ID: 15776447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.