These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1468639)

  • 21. In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants.
    Rodríguez-Moreno L; Barceló-Muñoz A; Ramos C
    Phytopathology; 2008 Jul; 98(7):815-22. PubMed ID: 18943258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Tn5 mutagenesis and the characteristics of indole-3-acetic acid biosynthesis in Alcaligenes faecalis A1501].
    Li F; Ping S; Su B; Lin M
    Wei Sheng Wu Xue Bao; 2000 Oct; 40(5):551-5. PubMed ID: 12548770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Aerobic methylobacteria are capable of synthesizing auxins].
    Ivanova EG; Doronina NV; Trotsenko IuA
    Mikrobiologiia; 2001; 70(4):452-8. PubMed ID: 11558269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cloning and identification of an Agrobacterium radiobacter 5D-1 chromosome fragment involved in control of nitrogen metabolism, biosynthesis of indolylacetic acid and replication of ColE1 plasmids].
    Kameneva SV; Rusliakova MV; Muronets EM; Elanskaia IV
    Genetika; 2001 Jul; 37(7):888-92. PubMed ID: 11558227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of an analogue-resistant aminoacyl-tRNA synthetase mutant in Aspergillus nidulans.
    Singh NK; Tiwary BN
    Indian J Exp Biol; 1992 Feb; 30(2):94-8. PubMed ID: 1521872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis.
    Riccardi G; Sora S; Ciferri O
    J Bacteriol; 1981 Sep; 147(3):1002-7. PubMed ID: 6792182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.
    Ona O; Van Impe J; Prinsen E; Vanderleyden J
    FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Azospirillum brasilense SP245 mutants in production of anthranilic and indolyl-3-acetic acids].
    Brodnikova NA; Katsy EI; Egorenkov DA; Panasenko VI
    Mol Gen Mikrobiol Virusol; 1992; (9-10):3-5. PubMed ID: 1298884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Production of indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas during the growth process].
    Oliunina LN; Shabaev VP
    Mikrobiologiia; 1996; 65(6):813-7. PubMed ID: 9102556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria.
    Patten CL; Blakney AJ; Coulson TJ
    Crit Rev Microbiol; 2013 Nov; 39(4):395-415. PubMed ID: 22978761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Indole 3-acetic acid production by ectomycorrhizal fungi.
    Gopinathan S; Raman N
    Indian J Exp Biol; 1992 Feb; 30(2):142-3. PubMed ID: 1521864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis.
    Xie B; Xu K; Zhao HX; Chen SF
    FEMS Microbiol Lett; 2005 Jul; 248(1):57-63. PubMed ID: 15961260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti.
    Kittell BL; Helinski DR; Ditta GS
    J Bacteriol; 1989 Oct; 171(10):5458-66. PubMed ID: 2551887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads.
    Gupta A; Rai V; Bagdwal N; Goel R
    Microbiol Res; 2005; 160(4):385-8. PubMed ID: 16255143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan.
    Müller A; Weiler EW
    Biol Chem; 2000 Aug; 381(8):679-86. PubMed ID: 11030425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM.
    Malhotra M; Srivastava S
    Environ Microbiol; 2008 May; 10(5):1365-73. PubMed ID: 18248455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development.
    Camerini S; Senatore B; Lonardo E; Imperlini E; Bianco C; Moschetti G; Rotino GL; Campion B; Defez R
    Arch Microbiol; 2008 Jul; 190(1):67-77. PubMed ID: 18415080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi.
    Glass NL; Kosuge T
    J Bacteriol; 1986 May; 166(2):598-603. PubMed ID: 3084452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi.
    Glass NL; Kosuge T
    J Bacteriol; 1988 May; 170(5):2367-73. PubMed ID: 3129408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The functional significance of the evolutionary divergence between the tryptophan operons of Escherichia coli and Salmonella typhimurium.
    Creighton TE
    J Mol Evol; 1974 Nov; 4(2):121-37. PubMed ID: 4619891
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.