These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14687209)

  • 1. Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater.
    Azad SA; Vikineswary S; Chong VC; Ramachandran KB
    Lett Appl Microbiol; 2004; 38(1):13-8. PubMed ID: 14687209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and production of biomass of Rhodovulum sulfidophilum in sardine processing wastewater.
    Azad SA; Vikineswary S; Ramachandran KB; Chong VC
    Lett Appl Microbiol; 2001 Oct; 33(4):264-8. PubMed ID: 11559398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374.
    Carlozzi P; Di Lorenzo T; Ghanotakis DF; Touloupakis E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2007-2015. PubMed ID: 31927760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical modeling and optimization of biomass granulation and COD removal in UASB reactors treating low strength wastewaters.
    Bhunia P; Ghangrekar MM
    Bioresour Technol; 2008 Jul; 99(10):4229-38. PubMed ID: 17936620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of aerobic bio treatment of meat plant effluent.
    Thayalakumaran N; Bhamidimarri R; Bickers PO
    Water Sci Technol; 2003; 48(8):53-60. PubMed ID: 14682570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.
    el Khames Saad M; Moussaoui Y; Zaghbani A; Mosrati I; Elaloui E; Ben Salem R
    Water Sci Technol; 2012; 66(1):217-23. PubMed ID: 22678221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition.
    Foong CP; Higuchi-Takeuchi M; Numata K
    PLoS One; 2019; 14(4):e0212654. PubMed ID: 31034524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chemical treatment on soluble residual COD in textile wastewaters.
    Dulkadiroglu H; Dogruel S; Okutman D; Kabdaşli I; Sözen S; Orhon D
    Water Sci Technol; 2002; 45(12):251-9. PubMed ID: 12201110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of dead Azolla filiculoides biomass in Biosorption of Au from wastewater.
    Umali LJ; Duncan JR; Burgess JE
    Biotechnol Lett; 2006 Jan; 28(1):45-50. PubMed ID: 16369874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioplastic production by feeding the marine Rhodovulum sulfidophilum DSM-1374 with four different carbon sources under batch, fed-batch and semi-continuous growth regimes.
    Carlozzi P; Touloupakis E
    N Biotechnol; 2021 May; 62():10-17. PubMed ID: 33333263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbaryl waste-water treatment by Rhodopseudomonas sphaeroides.
    Wu P; Chen Z; Zhang Y; Wang Y; Zhu F; Cao B; Jin L; Hou Y; Wu Y; Li N
    Chemosphere; 2019 Oct; 233():597-602. PubMed ID: 31195264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.
    Kikuchi Y; Umekage S
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening and hydrogen-producing characters of a highly efficient H₂-producing mutant of Rhodovulum sulfidophilum P5.
    Cai J; Wang G
    Bioresour Technol; 2013 Aug; 142():18-25. PubMed ID: 23732918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot-scale study of biomass reduction in wastewater treatment.
    Wang Q; Ai H; Li X; Liu H; Xie W
    Water Environ Res; 2007 May; 79(5):521-7. PubMed ID: 17571842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study.
    Connaughton S; Collins G; O'Flaherty V
    Water Res; 2006 Jul; 40(13):2503-10. PubMed ID: 16814840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COD and BOD reduction from coffee processing wastewater using Avacado peel carbon.
    Devi R; Singh V; Kumar A
    Bioresour Technol; 2008 Apr; 99(6):1853-60. PubMed ID: 17493806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater.
    Sklyar V; Epov A; Gladchenko M; Danilovich D; Kalyuzhnyi S
    Appl Biochem Biotechnol; 2003; 109(1-3):253-62. PubMed ID: 12794298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-electrolysis technology for industrial wastewater treatment.
    Jin YZ; Zhang YF; Li W
    J Environ Sci (China); 2003 May; 15(3):334-8. PubMed ID: 12938982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge.
    Łebkowska M; Narożniak-Rutkowska A; Pajor E
    Bioresour Technol; 2013 Mar; 132():78-83. PubMed ID: 23395758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution.
    Pires JF; Ferreira GMR; Reis KC; Schwan RF; Silva CF
    J Environ Manage; 2016 Nov; 182():455-463. PubMed ID: 27526083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.