These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 14687761)

  • 1. A piglet model for studies of gastrointestinal uptake of cadmium in neonates.
    Eklund G; Tallkvist J; Oskarsson A
    Toxicol Lett; 2004 Feb; 146(3):237-47. PubMed ID: 14687761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of iron status on cadmium uptake in suckling piglets.
    Ohrvik H; Oskarsson A; Lundh T; Skerfving S; Tallkvist J
    Toxicology; 2007 Oct; 240(1-2):15-24. PubMed ID: 17719162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium accumulation and metallothionein concentrations after 4-week dietary exposure to cadmium chloride or cadmium-metallothionein in rats.
    Groten JP; Sinkeldam EJ; Luten JB; van Bladeren PJ
    Toxicol Appl Pharmacol; 1991 Dec; 111(3):504-13. PubMed ID: 1746026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the gastrointestinal absorption site for cadmium chloride in vivo.
    Sorensen JA; Nielsen JB; Andersen O
    Pharmacol Toxicol; 1993 Sep; 73(3):169-73. PubMed ID: 8265522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout.
    Hollis L; Hogstrand C; Wood CM
    Arch Environ Contam Toxicol; 2001 Nov; 41(4):468-74. PubMed ID: 11598784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium.
    Chowdhury MJ; Baldisserotto B; Wood CM
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):381-90. PubMed ID: 15750771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity.
    Dudley RE; Gammal LM; Klaassen CD
    Toxicol Appl Pharmacol; 1985 Mar; 77(3):414-26. PubMed ID: 3975909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothionein in mice.
    Cherian MG; Goyer RA; Valberg LS
    J Toxicol Environ Health; 1978; 4(5-6):861-8. PubMed ID: 731733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chelating agents on oral uptake and renal deposition and excretion of cadmium.
    Engström B
    Environ Health Perspect; 1984 Mar; 54():219-32. PubMed ID: 6428873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein in liver and kidney of rats.
    Zhang D; Gao J; Zhang K; Liu X; Li J
    Biol Trace Elem Res; 2012 Oct; 149(1):57-63. PubMed ID: 22457021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue distribution of cadmium in rats given minimum amounts of cadmium-polluted rice or cadmium chloride for 8 months.
    Hiratsuka H; Satoh Si; Satoh M; Nishijima M; Katsuki Y; Suzuki J; Nakagawa Ji; Sumiyoshi M; Shibutani M; Mitsumori K; Tanaka-Kagawa T; Ando M
    Toxicol Appl Pharmacol; 1999 Oct; 160(2):183-91. PubMed ID: 10527917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary iron lowers the intestinal uptake of cadmium-metallothionein in rats.
    Groten JP; Luten JB; van Bladeren PJ
    Eur J Pharmacol; 1992 May; 228(1):23-8. PubMed ID: 1397065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carryover of cadmium from feed in growing pigs.
    Hoogenboom RL; Hattink J; van Polanen A; van Oostrom S; Verbunt JT; Traag WA; Kan KA; van Eijkeren JC; De Boeck G; Zeilmaker MJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(1):68-79. PubMed ID: 25436791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of nutritional deficiencies on gastrointestinal uptake of cadmium and cadmium-metallothionein in rats.
    Ohta H; Cherian MG
    Toxicology; 1995 Mar; 97(1-3):71-80. PubMed ID: 7716794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the role of iron in the reversal of cadmium toxicity in chicks.
    Blalock TL; Hill CH
    Biol Trace Elem Res; 1988; 17():247-57. PubMed ID: 2484363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets.
    Reeves PG; Chaney RL
    Environ Res; 2004 Nov; 96(3):311-22. PubMed ID: 15364599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability of cadmium from infant diets in newborn rats.
    Eklund G; Grawé KP; Oskarsson A
    Arch Toxicol; 2001 Nov; 75(9):522-30. PubMed ID: 11760812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and binding of Cd, Cu, and Zn to metallothionein in carp (Cyprinus carpio) using HPLC-ICP-TOFMS.
    Van Campenhout K; Infante HG; Adams F; Blust R
    Toxicol Sci; 2004 Aug; 80(2):276-87. PubMed ID: 15103052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrointestinal absorption of cadmium and metallothionein.
    Ohta H; Cherian MG
    Toxicol Appl Pharmacol; 1991 Jan; 107(1):63-72. PubMed ID: 1987661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased metallothionein in mouse liver, kidneys, and duodenum during lactation.
    Solaiman D; Jonah MM; Miyazaki W; Ho G; Bhattacharyya MH
    Toxicol Sci; 2001 Mar; 60(1):184-92. PubMed ID: 11222885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.