These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 14689186)

  • 1. Advantage of single-trial models for response to selection in wheat breeding multi-environment trials.
    Qiao CG; Basford KE; DeLacy IH; Cooper M
    Theor Appl Genet; 2004 May; 108(7):1256-64. PubMed ID: 14689186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.
    Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G
    G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of multi-environment trials for genomic selection based on crop models.
    Rincent R; Kuhn E; Monod H; Oury FX; Rousset M; Allard V; Le Gouis J
    Theor Appl Genet; 2017 Aug; 130(8):1735-1752. PubMed ID: 28540573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia.
    Chenu K; Cooper M; Hammer GL; Mathews KL; Dreccer MF; Chapman SC
    J Exp Bot; 2011 Mar; 62(6):1743-55. PubMed ID: 21421705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Genomic-Enabled Prediction Accuracy by Modeling Genotype × Environment Interactions in Kansas Wheat.
    Jarquín D; Lemes da Silva C; Gaynor RC; Poland J; Fritz A; Howard R; Battenfield S; Crossa J
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.
    Mahjourimajd S; Taylor J; Sznajder B; Timmins A; Shahinnia F; Rengel Z; Khabaz-Saberi H; Kuchel H; Okamoto M; Langridge P
    PLoS One; 2016; 11(7):e0159374. PubMed ID: 27459317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target Population of Environments for Wheat Breeding in India: Definition, Prediction and Genetic Gains.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Mondal S; Velu G; Juliana P; Vargas M; Pérez-Rodríguez P; Joshi AK; Braun HJ; Singh RP
    Front Plant Sci; 2021; 12():638520. PubMed ID: 34108977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic selection across multiple breeding cycles in applied bread wheat breeding.
    Michel S; Ametz C; Gungor H; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2016 Jun; 129(6):1179-89. PubMed ID: 27067826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations.
    Rebetzke GJ; Condon AG; Farquhar GD; Appels R; Richards RA
    Theor Appl Genet; 2008 Dec; 118(1):123-37. PubMed ID: 18818897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic selection in multi-environment plant breeding trials using a factor analytic linear mixed model.
    Tolhurst DJ; Mathews KL; Smith AB; Cullis BR
    J Anim Breed Genet; 2019 Jul; 136(4):279-300. PubMed ID: 31247682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence in the selection of common bean genotypes with high phenotypic stability.
    Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide- versus specific-adaptation strategy for lucerne breeding in northern Italy.
    Annicchiarico P
    Theor Appl Genet; 2007 Feb; 114(4):647-57. PubMed ID: 17186218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic selection accuracies within and between environments and small breeding groups in white spruce.
    Beaulieu J; Doerksen TK; MacKay J; Rainville A; Bousquet J
    BMC Genomics; 2014 Dec; 15(1):1048. PubMed ID: 25442968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat genetic gains for two distinct management schemes in China: An analysis of elite spring type genotypes.
    Mingliang D; Asim M; Mingju L; Abdelkhalik S; Manore D; Shaoxiang L; Hong Z; Liping L
    PLoS One; 2020; 15(2):e0228823. PubMed ID: 32027705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of yield and oil from a series of canola breeding trials. Part I. Fitting factor analytic mixed models with pedigree information.
    Beeck CP; Cowling WA; Smith AB; Cullis BR
    Genome; 2010 Nov; 53(11):992-1001. PubMed ID: 21076515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of parents for crossing based on genotyping and phenotyping for stripe rust (Puccinia striiformis) resistance and agronomic traits in bread wheat breeding.
    Khan MI; Khan MA; Khan AJ; Khattak GS; Mohammad T; Ahmad M
    Tsitol Genet; 2011; 45(6):10-27. PubMed ID: 22329159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-enabled prediction for sparse testing in multi-environmental wheat trials.
    Crespo-Herrera L; Howard R; Piepho HP; Pérez-Rodríguez P; Montesinos-Lopez O; Burgueño J; Singh R; Mondal S; Jarquín D; Crossa J
    Plant Genome; 2021 Nov; 14(3):e20151. PubMed ID: 34510790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.).
    Jiang Y; Zhao Y; Rodemann B; Plieske J; Kollers S; Korzun V; Ebmeyer E; Argillier O; Hinze M; Ling J; Röder MS; Ganal MW; Mette MF; Reif JC
    Heredity (Edinb); 2015 Mar; 114(3):318-26. PubMed ID: 25388142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling.
    Shirdelmoghanloo H; Taylor JD; Lohraseb I; Rabie H; Brien C; Timmins A; Martin P; Mather DE; Emebiri L; Collins NC
    BMC Plant Biol; 2016 Apr; 16():100. PubMed ID: 27101979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.