BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14689503)

  • 1. Influence of oscillatory mixing on the injectability of three acrylic and two calcium-phosphate bone cements for vertebroplasty.
    Baroud G; Matsushita C; Samara M; Beckman L; Steffen T
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):105-11. PubMed ID: 14689503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of mixing method on the cement temperature-mixing time history and doughing time of three acrylic cements for vertebroplasty.
    Baroud G; Samara M; Steffen T
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):112-6. PubMed ID: 14689504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Setting properties of four acrylic and two calcium-phosphate cements used in vertebroplasty.
    Baroud G; Swanson T; Steffen T
    J Long Term Eff Med Implants; 2006; 16(1):51-9. PubMed ID: 16566745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable acrylic bone cements for vertebroplasty with improved properties.
    Carrodeguas RG; Lasa BV; Del Barrio JS
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):94-104. PubMed ID: 14689502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae.
    Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O
    Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading.
    Wilke HJ; Mehnert U; Claes LE; Bierschneider MM; Jaksche H; Boszczyk BM
    Spine (Phila Pa 1976); 2006 Dec; 31(25):2934-41. PubMed ID: 17139224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate.
    Loeffel M; Ferguson SJ; Nolte LP; Kowal JH
    Spine (Phila Pa 1976); 2008 May; 33(12):1352-9. PubMed ID: 18496348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone substitutes in vertebroplasty.
    Heini PF; Berlemann U
    Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S205-13. PubMed ID: 11716020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method.
    Renner SM; Lim TH; Kim WJ; Katolik L; An HS; Andersson GB
    Spine (Phila Pa 1976); 2004 Jun; 29(11):E212-6. PubMed ID: 15167670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudoplasticity and setting properties of two-solution bone cement containing poly(methyl methacrylate) microspheres and nanospheres for kyphoplasty and vertebroplasty.
    Rodrigues DC; Gilbert JL; Hasenwinkel JM
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):248-56. PubMed ID: 19388091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of implant purchase with bone cements: an in vitro study of injectability and dough distribution.
    Gisep A; Curtis R; Hänni M; Suhm N
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):114-9. PubMed ID: 16245286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent.
    Hernández L; Fernández M; Collía F; Gurruchaga M; Goñi I
    Biomaterials; 2006 Jan; 27(1):100-7. PubMed ID: 16009418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical behavior of novel composite PMMA-CaP bone cements in an anatomically accurate cadaveric vertebroplasty model.
    Aghyarian S; Hu X; Haddas R; Lieberman IH; Kosmopoulos V; Kim HKW; Rodrigues DC
    J Orthop Res; 2017 Sep; 35(9):2067-2074. PubMed ID: 27891670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.
    Arens D; Rothstock S; Windolf M; Boger A
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone cement modeling for percutaneous vertebroplasty.
    Lepoutre N; Meylheuc L; Bara GI; Barbé L; Bayle B
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1504-1515. PubMed ID: 30267639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.