These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 14689589)

  • 41. Finasteride decreases the risk of prostatic intraepithelial neoplasia.
    Thompson IM; Lucia MS; Redman MW; Darke A; La Rosa FG; Parnes HL; Lippman SM; Coltman CA
    J Urol; 2007 Jul; 178(1):107-9; discussion 110. PubMed ID: 17499284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison of p21 and p27 immunoexpression in benign glands, prostatic intraepithelial neoplasia and prostate adenocarcinoma.
    Doganavsargil B; Simsir A; Boyacioglu H; Cal C; Hekimgil M
    BJU Int; 2006 Mar; 97(3):644-8. PubMed ID: 16469041
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alpha-methylacyl-CoA racemase (AMACR) expression in normal prostatic glands and high-grade prostatic intraepithelial neoplasia (HGPIN): association with diagnosis of prostate cancer.
    Ananthanarayanan V; Deaton RJ; Yang XJ; Pins MR; Gann PH
    Prostate; 2005 Jun; 63(4):341-6. PubMed ID: 15602744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis.
    Matsuyama M; Hayama T; Funao K; Kawahito Y; Sano H; Takemoto Y; Nakatani T; Yoshimura R
    Oncol Rep; 2007 Jul; 18(1):99-104. PubMed ID: 17549353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. IL-6, IL-10 and HSP-90 expression in tissue microarrays from human prostate cancer assessed by computer-assisted image analysis.
    Cardillo MR; Ippoliti F
    Anticancer Res; 2006; 26(5A):3409-16. PubMed ID: 17094460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The expression of thrombospondin-1 in benign prostatic hyperplasia and prostatic intraepithelial neoplasia is decreased in prostate cancer.
    Vallbo C; Wang W; Damber JE
    BJU Int; 2004 Jun; 93(9):1339-43. PubMed ID: 15180634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene.
    Koh CM; Gurel B; Sutcliffe S; Aryee MJ; Schultz D; Iwata T; Uemura M; Zeller KI; Anele U; Zheng Q; Hicks JL; Nelson WG; Dang CV; Yegnasubramanian S; De Marzo AM
    Am J Pathol; 2011 Apr; 178(4):1824-34. PubMed ID: 21435462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HER2 expression and gene amplification in pT2a Gleason score 6 prostate cancer incidentally detected in cystoprostatectomies: comparison with clinically detected androgen-dependent and androgen-independent cancer.
    Montironi R; Mazzucchelli R; Barbisan F; Stramazzotti D; Santinelli A; Scarpelli M; Lòpez Beltran A
    Hum Pathol; 2006 Sep; 37(9):1137-44. PubMed ID: 16938518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NOXA and PUMA expression add to clinical markers in predicting biochemical recurrence of prostate cancer patients in a survival tree model.
    Diallo JS; Aldejmah A; Mouhim AF; Péant B; Fahmy MA; Koumakpayi IH; Sircar K; Bégin LR; Mes-Masson AM; Saad F
    Clin Cancer Res; 2007 Dec; 13(23):7044-52. PubMed ID: 18056181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The nucleolus: structure, functions, amd associated diseases].
    Hernandez-Verdun D; Louvet E
    Med Sci (Paris); 2004 Jan; 20(1):37-44. PubMed ID: 14770362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nuclear matrix proteins as biomarkers in prostate cancer.
    Leman ES; Getzenberg RH
    J Cell Biochem; 2002; 86(2):213-23. PubMed ID: 12111991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the extracellular matrix in prostate carcinogenesis.
    Nagle RB
    J Cell Biochem; 2004 Jan; 91(1):36-40. PubMed ID: 14689579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Angiogenin-stimulated rRNA transcription is essential for initiation and survival of AKT-induced prostate intraepithelial neoplasia.
    Ibaragi S; Yoshioka N; Kishikawa H; Hu JK; Sadow PM; Li M; Hu GF
    Mol Cancer Res; 2009 Mar; 7(3):415-24. PubMed ID: 19258415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK.
    Thomas MU; Messex JK; Dang T; Abdulkadir SA; Jorcyk CL; Liou GY
    FEBS J; 2021 Mar; 288(6):1871-1886. PubMed ID: 32865335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The diagnostic pathology of the nuclear envelope in human cancers.
    Fischer AH
    Adv Exp Med Biol; 2014; 773():49-75. PubMed ID: 24563343
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleolar segregation during apoptosis of haemopoietic stem cell line FDCP-Mix.
    Reipert S; Bennion G; Hickman JA; Allen TD
    Cell Death Differ; 1999 Apr; 6(4):334-41. PubMed ID: 10381627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Diagnostic criteria of prostatic carcinoma].
    Bonkhoff H; Remberger K
    Pathologe; 1998 Jan; 19(1):21-32. PubMed ID: 9541939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The nucleolus, an ally, and an enemy of cancer cells.
    Stępiński D
    Histochem Cell Biol; 2018 Dec; 150(6):607-629. PubMed ID: 30105457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The nucleolus: when 2 became 3.
    Thiry M; Lamaye F; Lafontaine DL
    Nucleus; 2011; 2(4):289-93. PubMed ID: 21941117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Attachment of DNA to nucleolar and nuclear skeletal structures as visualized by Kleinschmidt molecular spreading.
    Bureau J; Hubert J; Bouteille M
    Biol Cell; 1986; 56(1):7-16. PubMed ID: 2424530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.