These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 14690030)

  • 1. Control of mercury vapor emissions from combustion flue gas.
    Yan R; Liang DT; Tay JH
    Environ Sci Pollut Res Int; 2003; 10(6):399-407. PubMed ID: 14690030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
    Meischen SJ; Van Pelt VJ; Zarate EA; Stephens EA
    J Air Waste Manag Assoc; 2004 Jan; 54(1):60-7. PubMed ID: 14871013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of selenium in coal combustion: volatilization and speciation in the flue gas.
    Yan R; Gauthier D; Flamant G; Peraudeau G; Lu J; Zheng C
    Environ Sci Technol; 2001 Apr; 35(7):1406-10. PubMed ID: 11348075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.
    Fuente-Cuesta A; Diaz-Somoano M; Lopez-Anton MA; Cieplik M; Fierro JL; Martínez-Tarazona MR
    J Environ Manage; 2012 May; 98():23-8. PubMed ID: 22325640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C; Machalek T; Miller S; Dene C; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of catalysts for oxidation of mercury in flue gas.
    Presto AA; Granite EJ
    Environ Sci Technol; 2006 Sep; 40(18):5601-9. PubMed ID: 17007115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J; Duan C; Lei M; Zhu X
    Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J; Wang W; Xu W; Wang X; Zhao S
    J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
    Lee JY; Keener TC; Yang YJ
    J Air Waste Manag Assoc; 2009 Jun; 59(6):725-32. PubMed ID: 19603740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant.
    Mylläri F; Pirjola L; Lihavainen H; Asmi E; Saukko E; Laurila T; Vakkari V; O'Connor E; Rautiainen J; Häyrinen A; Niemelä V; Maunula J; Hillamo R; Keskinen J; Rönkkö T
    J Air Waste Manag Assoc; 2019 Jan; 69(1):97-108. PubMed ID: 30204539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.
    Zhuang Y; Pavlish JH
    Environ Sci Technol; 2012 Apr; 46(8):4657-65. PubMed ID: 22439940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.