These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 14690113)

  • 1. Effect of chromatic dispersion on nonlinear phase noise.
    Green AG; Mitra PP; Wegener LG
    Opt Lett; 2003 Dec; 28(24):2455-7. PubMed ID: 14690113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear compensation of chromatic dispersion for phase- and intensity-modulated signals in the presence of amplified spontaneous emission noise.
    Matera F; Settembre M
    Opt Lett; 1994 Aug; 19(16):1198-200. PubMed ID: 19855468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear phase noise in coherent optical OFDM transmission systems.
    Zhu X; Kumar S
    Opt Express; 2010 Mar; 18(7):7347-60. PubMed ID: 20389756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dispersion on nonlinear phase noise.
    Ho KP; Wang HC
    Opt Lett; 2006 Jul; 31(14):2109-11. PubMed ID: 16794695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase fluctuations of linearly chirped solitons in a noisy optical fiber channel with varying dispersion, nonlinearity, and gain.
    Chen S; Yang YH; Yi L; Lu P; Guo DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036617. PubMed ID: 17500819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-sensitively amplified wavelength-division multiplexed optical transmission systems.
    Vijayan K; He Z; Foo B; Schröder J; Karlsson M; Andrekson PA
    Opt Express; 2021 Oct; 29(21):33086-33096. PubMed ID: 34809126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent optical OFDM: theory and design.
    Shieh W; Bao H; Tang Y
    Opt Express; 2008 Jan; 16(2):841-59. PubMed ID: 18542158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation.
    Fatadin I; Savory SJ
    Opt Express; 2010 Jul; 18(15):16273-8. PubMed ID: 20721013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning.
    Fan Q; Zhou G; Gui T; Lu C; Lau APT
    Nat Commun; 2020 Jul; 11(1):3694. PubMed ID: 32703945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dispersion on nonlinear phase noise in optical transmission systems.
    Kumar S
    Opt Lett; 2005 Dec; 30(24):3278-80. PubMed ID: 16389804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element characterization of chromatic dispersion in nonlinear holey fibers.
    Fujisawa T; Koshiba M
    Opt Express; 2003 Jun; 11(13):1481-9. PubMed ID: 19466020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On nonlinear distortions of highly dispersive optical coherent systems.
    Vacondio F; Rival O; Simonneau C; Grellier E; Bononi A; Lorcy L; Antona JC; Bigo S
    Opt Express; 2012 Jan; 20(2):1022-32. PubMed ID: 22274449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of all-optical phase noise suppression scheme using optical nonlinearity and conversion/dispersion delay.
    Chitgarha MR; Khaleghi S; Ziyadi M; Mohajerin-Ariaei A; Almaiman A; Daab W; Rogawski D; Tur M; Touch JD; Langrock C; Fejer MM; Willner AE
    Opt Lett; 2014 May; 39(10):2928-31. PubMed ID: 24978239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and comparison of impairments in differential phase-shift keying and on-off keying transmission systems based on the error probability.
    Zhu X; Kumar S; Li X
    Appl Opt; 2006 Sep; 45(26):6812-22. PubMed ID: 16926917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods.
    Minzioni P; Pusino V; Cristiani I; Marazzi L; Martinelli M; Langrock C; Fejer MM; Degiorgio V
    Opt Express; 2010 Aug; 18(17):18119-24. PubMed ID: 20721200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase noise in photonic communications systems using linear amplifiers.
    Gordon JP; Mollenauer LF
    Opt Lett; 1990 Dec; 15(23):1351-3. PubMed ID: 19771087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation.
    Al-Khateeb MAZ; Iqbal MA; Tan M; Ali A; McCarthy M; Harper P; Ellis AD
    Opt Express; 2018 Feb; 26(3):3145-3160. PubMed ID: 29401846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
    Liu Y; Yan J; Han G
    Appl Opt; 2014 Sep; 53(27):6302-6. PubMed ID: 25322111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatic-dispersion measurement by modulation phase-shift method using a Kerr phase-interrogator.
    Baker C; Lu Y; Bao X
    Opt Express; 2014 Sep; 22(19):22314-9. PubMed ID: 25321703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of spontaneous modulation instability and phase noise with a coherent seed in the interferometric fiber sensing systems.
    Hu X; Chen W; Lu Y; Chen M; Meng Z
    Opt Lett; 2018 Aug; 43(15):3642-3645. PubMed ID: 30067644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.