These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 60 YEARS OF NEUROENDOCRINOLOGY: Regulation of mammalian neuroendocrine physiology and rhythms by melatonin. Johnston JD; Skene DJ J Endocrinol; 2015 Aug; 226(2):T187-98. PubMed ID: 26101375 [TBL] [Abstract][Full Text] [Related]
3. The pineal gland and cancer. Ronco AL; Halberg F Anticancer Res; 1996; 16(4A):2033-9. PubMed ID: 8712739 [TBL] [Abstract][Full Text] [Related]
4. Neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland. Wilson BW; Stevens RG; Anderson LE Life Sci; 1989; 45(15):1319-32. PubMed ID: 2677573 [TBL] [Abstract][Full Text] [Related]
5. Alterations of the circadian melatonin rhythm by the electromagnetic spectrum: a study in environmental toxicology. Reiter RJ Regul Toxicol Pharmacol; 1992 Jun; 15(3):226-44. PubMed ID: 1509117 [TBL] [Abstract][Full Text] [Related]
6. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits. Halgamuge MN Radiat Prot Dosimetry; 2013 May; 154(4):405-16. PubMed ID: 23051584 [TBL] [Abstract][Full Text] [Related]
7. Biorhythms and the biological clock involvement of melatonin and the pineal gland in life and disease. Nir I Biomed Environ Sci; 1995 Jun; 8(2):90-105. PubMed ID: 7546348 [No Abstract] [Full Text] [Related]
8. Exposure to a 50-hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice. Kumlin T; Heikkinen P; Laitinen JT; Juutilainen J J Radiat Res; 2005 Sep; 46(3):313-8. PubMed ID: 16210787 [TBL] [Abstract][Full Text] [Related]
9. [Evaluation of the effect of magnetic fields on the secretion of melatonin in humans and rats. Circadian study]. Touitou Y; Selmaoui B; Lambrozo J; Auzeby A Bull Acad Natl Med; 2002; 186(9):1625-39; discussion 1639-41. PubMed ID: 14556578 [TBL] [Abstract][Full Text] [Related]
10. Chronic exposure to ELF fields may induce depression. Wilson BW Bioelectromagnetics; 1988; 9(2):195-205. PubMed ID: 3288221 [TBL] [Abstract][Full Text] [Related]
11. Importance and relevance of melatonin to human biological rhythms. Arendt J J Neuroendocrinol; 2003 Apr; 15(4):427-31. PubMed ID: 12622845 [TBL] [Abstract][Full Text] [Related]
13. [The influence of geomagnetic field variations on the pineal gland circadian activity]. Iashmanov VA; Koshelevskiĭ VK Adv Gerontol; 2008; 21(3):382-5. PubMed ID: 19432170 [TBL] [Abstract][Full Text] [Related]
14. [Melatonin and neuroendocrine regulations in fish]. Falcón J; Besseau L; Sauzet S; Fuentès M; Boeuf G J Soc Biol; 2007; 201(1):21-9. PubMed ID: 17762821 [TBL] [Abstract][Full Text] [Related]
15. Human pineal physiology and functional significance of melatonin. Macchi MM; Bruce JN Front Neuroendocrinol; 2004; 25(3-4):177-95. PubMed ID: 15589268 [TBL] [Abstract][Full Text] [Related]
16. Circadian clock system in the pineal gland. Fukada Y; Okano T Mol Neurobiol; 2002 Feb; 25(1):19-30. PubMed ID: 11890455 [TBL] [Abstract][Full Text] [Related]
17. Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Ziv L; Tovin A; Strasser D; Gothilf Y Exp Eye Res; 2007 Jan; 84(1):92-9. PubMed ID: 17067577 [TBL] [Abstract][Full Text] [Related]
18. Discovering light effects on the brain. Snyder SH; Borjigin J; Sassone-Corsi P Am J Psychiatry; 2006 May; 163(5):771. PubMed ID: 16648313 [No Abstract] [Full Text] [Related]
19. Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer. Reiter RJ Rev Environ Health; 1994; 10(3-4):171-86. PubMed ID: 7724876 [TBL] [Abstract][Full Text] [Related]
20. Vertebrate circadian and photoperiodic systems: role of the pineal gland and melatonin. Underwood H; Goldman BD J Biol Rhythms; 1987; 2(4):279-315. PubMed ID: 2979667 [No Abstract] [Full Text] [Related] [Next] [New Search]