These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 14690431)
1. Solvent and primary deuterium isotope effects show that lactate CH and OH bond cleavages are concerted in Y254F flavocytochrome b2, consistent with a hydride transfer mechanism. Sobrado P; Fitzpatrick PF Biochemistry; 2003 Dec; 42(51):15208-14. PubMed ID: 14690431 [TBL] [Abstract][Full Text] [Related]
2. Probing the relative timing of hydrogen abstraction steps in the flavocytochrome b2 reaction with primary and solvent deuterium isotope effects and mutant enzymes. Sobrado P; Daubner SC; Fitzpatrick PF Biochemistry; 2001 Jan; 40(4):994-1001. PubMed ID: 11170421 [TBL] [Abstract][Full Text] [Related]
3. The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins. Gondry M; Dubois J; Terrier M; Lederer F Eur J Biochem; 2001 Sep; 268(18):4918-27. PubMed ID: 11559361 [TBL] [Abstract][Full Text] [Related]
4. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation. Dubois J; Chapman SK; Mathews FS; Reid GA; Lederer F Biochemistry; 1990 Jul; 29(27):6393-400. PubMed ID: 2207080 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic and structural studies of H373Q flavocytochrome b2: effects of mutating the active site base. Tsai CL; Gokulan K; Sobrado P; Sacchettini JC; Fitzpatrick PF Biochemistry; 2007 Jul; 46(26):7844-51. PubMed ID: 17563122 [TBL] [Abstract][Full Text] [Related]
6. On the rate of proton exchange with solvent of the catalytic histidine in flavocytochrome b2 (yeast L-lactate dehydrogenase). Balme A; Lederer F Protein Sci; 1994 Jan; 3(1):109-17. PubMed ID: 8142887 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Lin Y; West AH; Cook PF Biochemistry; 2009 Aug; 48(30):7305-12. PubMed ID: 19530703 [TBL] [Abstract][Full Text] [Related]
8. Altered substrate specificity in flavocytochrome b2: structural insights into the mechanism of L-lactate dehydrogenation. Mowat CG; Wehenkel A; Green AJ; Walkinshaw MD; Reid GA; Chapman SK Biochemistry; 2004 Jul; 43(29):9519-26. PubMed ID: 15260495 [TBL] [Abstract][Full Text] [Related]
9. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403 [TBL] [Abstract][Full Text] [Related]
10. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
11. Role of tyrosine 143 in lactate dehydrogenation by flavocytochrome b2. Primary kinetic isotope effect studies with a phenylalanine mutant. Rouvière-Fourmy N; Capeillère-Blandin C; Lederer F Biochemistry; 1994 Jan; 33(3):798-806. PubMed ID: 8292608 [TBL] [Abstract][Full Text] [Related]
12. Insights into the mechanisms of flavoprotein oxidases from kinetic isotope effects. Fitzpatrick PF J Labelled Comp Radiopharm; 2007 Oct; 50(11-12):1016-1025. PubMed ID: 19890477 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase). Mowat CG; Beaudoin I; Durley RC; Barton JD; Pike AD; Chen ZW; Reid GA; Chapman SK; Mathews FS; Lederer F Biochemistry; 2000 Mar; 39(12):3266-75. PubMed ID: 10727218 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
15. L-lactate dehydrogenation in flavocytochrome b2: a first principles molecular dynamics study. Tabacchi G; Zucchini D; Caprini G; Gamba A; Lederer F; Vanoni MA; Fois E FEBS J; 2009 Apr; 276(8):2368-80. PubMed ID: 19348008 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme. Hsu C; West AH; Cook PF Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079 [TBL] [Abstract][Full Text] [Related]
17. Carbanion versus hydride transfer mechanisms in flavoprotein-catalyzed dehydrogenations. Fitzpatrick PF Bioorg Chem; 2004 Jun; 32(3):125-39. PubMed ID: 15110192 [TBL] [Abstract][Full Text] [Related]
18. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase. Gannavaram S; Sirin S; Sherman W; Gadda G Biochemistry; 2014 Oct; 53(41):6574-83. PubMed ID: 25243743 [TBL] [Abstract][Full Text] [Related]
20. Tyr-143 facilitates interdomain electron transfer in flavocytochrome b2. Miles CS; Rouvière-Fourmy N; Lederer F; Mathews FS; Reid GA; Black MT; Chapman SK Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):187-92. PubMed ID: 1637299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]