BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 14690439)

  • 1. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.
    Saxena A; Hur RS; Luo C; Doctor BP
    Biochemistry; 2003 Dec; 42(51):15292-9. PubMed ID: 14690439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase.
    Zimmermann M; Grösgen S; Westwell MS; Greenfield SA
    J Neurochem; 2008 Jan; 104(1):221-32. PubMed ID: 17986217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protease is recovered with a dimeric form of acetylcholinesterase in fetal bovine serum.
    Michaelson S; Small DH
    Brain Res; 1993 May; 611(1):75-80. PubMed ID: 8518952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific glycosylation analysis of the bovine lysosomal alpha-mannosidase.
    Faid V; Evjen G; Tollersrud OK; Michalski JC; Morelle W
    Glycobiology; 2006 May; 16(5):440-61. PubMed ID: 16449350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycoinositol phospholipid anchor and protein C-terminus of bovine erythrocyte acetylcholinesterase: analysis by mass spectrometry and by protein and DNA sequencing.
    Haas R; Jackson BC; Reinhold B; Foster JD; Rosenberry TL
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):817-25. PubMed ID: 8615775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a technique to identify acetylcholinesterase C-terminal peptides in human serum samples.
    Halliday AC; Kim O; Bond CE; Greenfield SA
    Chem Biol Interact; 2010 Sep; 187(1-3):110-4. PubMed ID: 20156431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recombinant form of the catalytic subunit of phosphorylase kinase that is soluble, monomeric, and includes key C-terminal residues.
    Pete MJ; Liao CX; Bartleson C; Graves DJ
    Arch Biochem Biophys; 1999 Jul; 367(1):104-14. PubMed ID: 10375405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine acetylcholinesterase: cloning, expression and characterization.
    Mendelson I; Kronman C; Ariel N; Shafferman A; Velan B
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):251-9. PubMed ID: 9693127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of salt-soluble forms of acetylcholinesterase from bovine brain.
    Liao J; Boschetti N; Mortensen V; Jensen SP; Koch C; Nørgaard-Pedersen B; Brodbeck U
    J Neurochem; 1994 Oct; 63(4):1446-53. PubMed ID: 7931296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact molecular mass determination of various forms of native and de-N-glycosylated human plasma-derived antithrombin by means of electrospray ionization ion trap mass spectrometry.
    Kleinova M; Buchacher A; Heger A; Pock K; Rizzi A; Allmaier G
    J Mass Spectrom; 2004 Dec; 39(12):1429-36. PubMed ID: 15578742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases.
    Saxena A; Qian N; Kovach IM; Kozikowski AP; Pang YP; Vellom DC; Radić Z; Quinn D; Taylor P; Doctor BP
    Protein Sci; 1994 Oct; 3(10):1770-8. PubMed ID: 7849595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric characterization and glycosylation profile of bovine pancreatic bile salt-activated lipase.
    Wang CS; Jackson KW; Dashti A; Downs D; Zhang X; Tang JJ
    Protein Expr Purif; 1998 Mar; 12(2):259-68. PubMed ID: 9518468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML
    Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid domains control the circulatory residence time of primate acetylcholinesterases in rhesus macaques (Macaca mulatta).
    Cohen O; Kronman C; Velan B; Shafferman A
    Biochem J; 2004 Feb; 378(Pt 1):117-28. PubMed ID: 14575524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization.
    Weeks JL; Zoraghi R; Francis SH; Corbin JD
    Biochemistry; 2007 Sep; 46(36):10353-64. PubMed ID: 17696499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase.
    Saxena A; Raveh L; Ashani Y; Doctor BP
    Biochemistry; 1997 Jun; 36(24):7481-9. PubMed ID: 9200697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.
    Simon S; Krejci E; Massoulié J
    EMBO J; 1998 Nov; 17(21):6178-87. PubMed ID: 9799227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.