BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14690495)

  • 1. Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis.
    Turkewitz AP
    Traffic; 2004 Feb; 5(2):63-8. PubMed ID: 14690495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New class of cargo protein in Tetrahymena thermophila dense core secretory granules.
    Haddad A; Bowman GR; Turkewitz AP
    Eukaryot Cell; 2002 Aug; 1(4):583-93. PubMed ID: 12456006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena.
    Briguglio JS; Kumar S; Turkewitz AP
    J Cell Biol; 2013 Nov; 203(3):537-50. PubMed ID: 24189272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent transport and sorting of functionally distinct protein families in Tetrahymena thermophila dense core secretory granules.
    Rahaman A; Miao W; Turkewitz AP
    Eukaryot Cell; 2009 Oct; 8(10):1575-83. PubMed ID: 19684282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic, genomic, and functional analysis of the granule lattice proteins in Tetrahymena secretory granules.
    Cowan AT; Bowman GR; Edwards KF; Emerson JJ; Turkewitz AP
    Mol Biol Cell; 2005 Sep; 16(9):4046-60. PubMed ID: 15958493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical analysis of secretion mutants of Tetrahymena using a mucocyst-specific monoclonal antibody.
    Turkewitz AP; Kelly RB
    Dev Genet; 1992; 13(2):151-9. PubMed ID: 1499156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in
    Kaur H; Sparvoli D; Osakada H; Iwamoto M; Haraguchi T; Turkewitz AP
    Mol Biol Cell; 2017 Jun; 28(11):1551-1564. PubMed ID: 28381425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core formation and the acquisition of fusion competence are linked during secretory granule maturation in Tetrahymena.
    Bowman GR; Elde NC; Morgan G; Winey M; Turkewitz AP
    Traffic; 2005 Apr; 6(4):303-23. PubMed ID: 15752136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p.
    Kumar S; Briguglio JS; Turkewitz AP
    Eukaryot Cell; 2015 Aug; 14(8):817-33. PubMed ID: 26092918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila.
    Kumar S; Briguglio JS; Turkewitz AP
    Mol Biol Cell; 2014 Aug; 25(16):2444-60. PubMed ID: 24943840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of regulated exocytosis in Tetrahymena.
    Melia SM; Cole ES; Turkewitz AP
    J Cell Sci; 1998 Jan; 111 ( Pt 1)():131-40. PubMed ID: 9394019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila.
    Kontur C; Kumar S; Lan X; Pritchard JK; Turkewitz AP
    G3 (Bethesda); 2016 Aug; 6(8):2505-16. PubMed ID: 27317773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary balance: conservation vs innovation in ciliate membrane trafficking.
    Guerrier S; Plattner H; Richardson E; Dacks JB; Turkewitz AP
    Traffic; 2017 Jan; 18(1):18-28. PubMed ID: 27696651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila.
    Sparvoli D; Richardson E; Osakada H; Lan X; Iwamoto M; Bowman GR; Kontur C; Bourland WA; Lynn DH; Pritchard JK; Haraguchi T; Dacks JB; Turkewitz AP
    Curr Biol; 2018 Mar; 28(5):697-710.e13. PubMed ID: 29478853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of exocytosis mutants indicates close coupling between regulated secretion and transcription activation in Tetrahymena.
    Haddad A; Turkewitz AP
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10675-80. PubMed ID: 9380694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granule lattice protein 1 (Grl1p), an acidic, calcium-binding protein in Tetrahymena thermophila dense-core secretory granules, influences granule size, shape, content organization, and release but not protein sorting or condensation.
    Chilcoat ND; Melia SM; Haddad A; Turkewitz AP
    J Cell Biol; 1996 Dec; 135(6 Pt 2):1775-87. PubMed ID: 8991090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila.
    Bowman GR; Smith DG; Michael Siu KW; Pearlman RE; Turkewitz AP
    J Eukaryot Microbiol; 2005; 52(4):291-7. PubMed ID: 16014006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila.
    Kuppannan A; Jiang YY; Maier W; Liu C; Lang CF; Cheng CY; Field MC; Zhao M; Zoltner M; Turkewitz AP
    PLoS Genet; 2022 May; 18(5):e1010194. PubMed ID: 35587496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion.
    Tanguy E; Carmon O; Wang Q; Jeandel L; Chasserot-Golaz S; Montero-Hadjadje M; Vitale N
    J Neurochem; 2016 Jun; 137(6):904-12. PubMed ID: 26877188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane targeting in secretion.
    Schrader M
    Subcell Biochem; 2004; 37():391-421. PubMed ID: 15376628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.