These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 14691093)

  • 21. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The added mass forces in insect flapping wings.
    Liu L; Sun M
    J Theor Biol; 2018 Jan; 437():45-50. PubMed ID: 29037847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.
    Sun M; Lan SL
    J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experiments and numerical simulations on hovering three-dimensional flexible flapping wings.
    Diaz-Arriba D; Jardin T; Gourdain N; Pons F; David L
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerodynamic investigation on shifted-back vertical stroke plane of flapping wing in forward flight.
    Han JS; Breitsamter C
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34767536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.
    Altshuler DL; Dickson WB; Vance JT; Roberts SP; Dickinson MH
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18213-8. PubMed ID: 16330767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
    Song J; Luo H; Hedrick TL
    J R Soc Interface; 2014 Sep; 11(98):20140541. PubMed ID: 25008082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.
    Ramamurti R; Sandberg WC; Löhner R; Walker JA; Westneat MW
    J Exp Biol; 2002 Oct; 205(Pt 19):2997-3008. PubMed ID: 12200403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow development and leading edge vorticity in bristled insect wings.
    O'Callaghan F; Lehmann FO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):219-229. PubMed ID: 36810678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model.
    Reade J; Jankauski M
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.