These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14691178)

  • 21. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
    Washburn MP; Wells WW
    Biochemistry; 1999 Jan; 38(1):268-74. PubMed ID: 9890907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase.
    Yan H; Harding JJ; Xing K; Lou MF
    Curr Eye Res; 2007 May; 32(5):455-63. PubMed ID: 17514531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells.
    Fernando MR; Lechner JM; Löfgren S; Gladyshev VN; Lou MF
    FASEB J; 2006 Dec; 20(14):2645-7. PubMed ID: 17065220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Thioltransferase and thioredoxin system in cataract].
    Chai F; Yan H
    Yan Ke Xue Bao; 2007 Mar; 23(1):15-9. PubMed ID: 17444035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rat brain thioltransferase: regional distribution, immunological characterization, and localization by fluorescent in situ hybridization.
    Balijepalli S; Tirumalai PS; Swamy KV; Boyd MR; Mieyal JJ; Ravindranath V
    J Neurochem; 1999 Mar; 72(3):1170-8. PubMed ID: 10037490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of lens glycolytic pathway by thioltransferase.
    Qiao F; Xing K; Lou MF
    Exp Eye Res; 2000 Jun; 70(6):745-53. PubMed ID: 10843779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of age on the thioltransferase (glutaredoxin) and thioredoxin systems in the human lens.
    Xing KY; Lou MF
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6598-604. PubMed ID: 20610843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
    Zhang J; Yan H; Lou MF
    Exp Eye Res; 2017 Aug; 161():36-42. PubMed ID: 28579033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thioltransferase in human red blood cells: kinetics and equilibrium.
    Mieyal JJ; Starke DW; Gravina SA; Hocevar BA
    Biochemistry; 1991 Sep; 30(36):8883-91. PubMed ID: 1888746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutathione reductase from human cataract lenses can be revived by reducing agents and by a molecular chaperone, alpha-crystallin.
    Rachdan D; Lou MF; Harding JJ
    Curr Eye Res; 2005 Oct; 30(10):919-25. PubMed ID: 16251130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis.
    Srinivasan U; Mieyal PA; Mieyal JJ
    Biochemistry; 1997 Mar; 36(11):3199-206. PubMed ID: 9115997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Ascorbate Regeneration Via Dehydroascorbate Reductase Confers Tolerance to Photo-Oxidative Stress in Chlamydomonas reinhardtii.
    Lin ST; Chiou CW; Chu YL; Hsiao Y; Tseng YF; Chen YC; Chen HJ; Chang HY; Lee TM
    Plant Cell Physiol; 2016 Oct; 57(10):2104-2121. PubMed ID: 27440549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity.
    Wells WW; Xu DP; Yang YF; Rocque PA
    J Biol Chem; 1990 Sep; 265(26):15361-4. PubMed ID: 2394726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium.
    Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes.
    Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Salubrinal protects human lens epithelial cells against endoplasmic reticulum stress-associated apoptosis].
    Li Y; Zheng GY; Liu Y
    Zhonghua Yan Ke Za Zhi; 2016 Jun; 52(6):437-43. PubMed ID: 27373572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the dehydroascorbic acid reductase and thioltransferase (Glutaredoxin) activities of bovine erythrocyte glutathione peroxidase.
    Washburn MP; Wells WW
    Biochem Biophys Res Commun; 1999 Apr; 257(2):567-71. PubMed ID: 10198252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low molecular weight protein tyrosine phosphatase (LMW-PTP) and its possible physiological functions of redox signaling in the eye lens.
    Xing K; Raza A; Löfgren S; Fernando MR; Ho YS; Lou MF
    Biochim Biophys Acta; 2007 May; 1774(5):545-55. PubMed ID: 17428749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.