These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 14691184)

  • 41. Threshold versus intensity functions in two-colour automated perimetry.
    Simunovic MP; Hess K; Avery N; Mammo Z
    Ophthalmic Physiol Opt; 2021 Jan; 41(1):157-164. PubMed ID: 33063858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electroretinographic and psychophysical findings during early and late stages of human immunodeficiency virus infection and cytomegalovirus retinitis.
    Latkany PA; Holopigian K; Lorenzo-Latkany M; Seiple W
    Ophthalmology; 1997 Mar; 104(3):445-53. PubMed ID: 9082271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective cone dystrophy with protan genotype.
    Kellner U; Sadowski B; Zrenner E; Foerster MH
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2381-7. PubMed ID: 7591627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rod and cone a-waves in central retinal vein occlusion.
    Tanimoto N; Usui T; Ichibe M; Takagi M; Suzuki K; Hasegawa S; Abe H
    Jpn J Ophthalmol; 2005; 49(5):402-10. PubMed ID: 16187042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiological and Pupillometric Abnormalities in PROM1 Cone-Rod Dystrophy.
    Park JC; Collison FT; Fishman GA; McAnany JJ
    Transl Vis Sci Technol; 2020 Aug; 9(9):26. PubMed ID: 32879782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prolonged rod dark adaptation in patients with cone-rod dystrophy.
    Fishman GA; Pulluru P; Alexander KR; Derlacki DJ; Gilbert LD
    Am J Ophthalmol; 1994 Sep; 118(3):362-7. PubMed ID: 8085594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies.
    Lachapelle P; Rousseau S; McKerral M; Benoit J; Polomeno RC; Koenekoop RK; Little JM
    Doc Ophthalmol; 1998; 95(1):35-54. PubMed ID: 10189180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rod ERGs in retinitis pigmentosa and cone-rod degeneration.
    Birch DG; Fish GE
    Invest Ophthalmol Vis Sci; 1987 Jan; 28(1):140-50. PubMed ID: 3804644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.
    Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinal cone dysfunction of supernormal rod ERG type. Five new cases.
    Rosenberg T; Simonsen SE
    Acta Ophthalmol (Copenh); 1993 Apr; 71(2):246-55. PubMed ID: 8333273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electroretinogram in cone dystrophy.
    Iijima H; Yamaguchi S; Kogure S; Hosaka O; Shibutani T
    Jpn J Ophthalmol; 1991; 35(4):453-66. PubMed ID: 1821435
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age-related changes in Cngb1-X1 knockout mice: prolonged cone survival.
    Zhang Y; Rubin GR; Fineberg N; Huisingh C; McGwin G; Pittler SJ; Kraft TW
    Doc Ophthalmol; 2012 Jun; 124(3):163-75. PubMed ID: 22367173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave.
    Hood DC; Birch DG
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2948-61. PubMed ID: 8206712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining.
    Jacobson SG; Cideciyan AV; Aleman TS; Sumaroka A; Roman AJ; Swider M; Schwartz SB; Banin E; Stone EM
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):70-9. PubMed ID: 20702822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dark adaptation in patients with Best vitelliform macular dystrophy.
    Baca W; Fishman GA; Alexander KR; Glenn AM
    Br J Ophthalmol; 1994 Jun; 78(6):430-2. PubMed ID: 8060924
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human retinal dark adaptation tracked in vivo with the electroretinogram: insights into processes underlying recovery of cone- and rod-mediated vision.
    Jiang X; Mahroo OA
    J Physiol; 2022 Nov; 600(21):4603-4621. PubMed ID: 35612091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrophysiological findings in two young patients with Bothnia dystrophy and a mutation in the RLBP1 gene.
    Gränse L; Abrahamson M; Ponjavic V; Andréasson S
    Ophthalmic Genet; 2001 Jun; 22(2):97-105. PubMed ID: 11449319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. THE NATURAL HISTORY OF FULL-FIELD STIMULUS THRESHOLD DECLINE IN CHOROIDEREMIA.
    Dimopoulos IS; Freund PR; Knowles JA; MacDonald IM
    Retina; 2018 Sep; 38(9):1731-1742. PubMed ID: 28800019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.