These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14691193)

  • 1. The effect of attention on conventional automated perimetry and luminance size threshold perimetry.
    Wall M; Woodward KR; Brito CF
    Invest Ophthalmol Vis Sci; 2004 Jan; 45(1):342-50. PubMed ID: 14691193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of driver distraction and low alcohol concentrations on useful field of view and frequency-doubling technology perimetry.
    Puell MC; Barrio A
    Acta Ophthalmol; 2008 Sep; 86(6):634-41. PubMed ID: 18081908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random dot motion perimetry in patients with glaucoma and in normal subjects.
    Wall M; Ketoff KM
    Am J Ophthalmol; 1995 Nov; 120(5):587-96. PubMed ID: 7485360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random dot motion stimuli are more sensitive than light stimuli for detection of visual field loss in ocular hypertension patients.
    Wall M; Jennisch CS
    Optom Vis Sci; 1999 Aug; 76(8):550-7. PubMed ID: 10472961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship of visual threshold and reaction time to visual field eccentricity with conventional automated perimetry.
    Wall M; Kutzko KE; Chauhan BC
    Vision Res; 2002 Mar; 42(6):781-7. PubMed ID: 11888543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using motion perimetry to detect visual field defects in patients with idiopathic intracranial hypertension: a comparison with conventional automated perimetry.
    Wall M; Montgomery EB
    Neurology; 1995 Jun; 45(6):1169-75. PubMed ID: 7783884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of intermittent versus continuous patient monitoring on reliability indices during automated perimetry.
    Johnson LN; Aminlari A; Sassani JW
    Ophthalmology; 1993 Jan; 100(1):76-84. PubMed ID: 8433832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal values for fundus perimetry with the scanning laser ophthalmoscope.
    Rohrschneider K; Becker M; Schumacher N; Fendrich T; Völcker HE
    Am J Ophthalmol; 1998 Jul; 126(1):52-8. PubMed ID: 9683149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.
    Hirasawa K; Takahashi N; Satou T; Kasahara M; Matsumura K; Shoji N
    Curr Eye Res; 2017 Aug; 42(8):1160-1168. PubMed ID: 28441081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V, and VI for glaucomatous loss.
    Wall M; Doyle CK; Eden T; Zamba KD; Johnson CA
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3975-83. PubMed ID: 23633660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multifocal visual evoked potential: an objective measure of visual fields?
    Seiple W; Holopigian K; Clemens C; Greenstein VC; Hood DC
    Vision Res; 2005 Apr; 45(9):1155-63. PubMed ID: 15707924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold variation in automated perimetry.
    Stewart WC; Hunt HH
    Surv Ophthalmol; 1993; 37(5):353-61. PubMed ID: 8484168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central perimetric sensitivity estimates are directly influenced by the fixation target.
    Denniss J; Astle AT
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):453-8. PubMed ID: 27146101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pupillary dilation and its effects on automated perimetry results.
    Kudrna GR; Stanley MA; Remington LA
    J Am Optom Assoc; 1995 Nov; 66(11):675-80. PubMed ID: 8576532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing short-term fluctuation by increasing the intensity of the fixation aid during perimetry.
    Safran AB; Bader C; Brazitikos PD; de Weisse C; Désangles D
    Am J Ophthalmol; 1992 Feb; 113(2):193-7. PubMed ID: 1550188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard Automated Perimetry: Determining Spatial Summation and Its Effect on Contrast Sensitivity Across the Visual Field.
    Khuu SK; Kalloniatis M
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3565-76. PubMed ID: 26047043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry.
    Patel A; Wollstein G; Ishikawa H; Schuman JS
    Ophthalmology; 2007 Mar; 114(3):480-7. PubMed ID: 17123623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement error of visual field tests in glaucoma.
    Spry PG; Johnson CA; McKendrick AM; Turpin A
    Br J Ophthalmol; 2003 Jan; 87(1):107-12. PubMed ID: 12488273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swedish Interactive Threshold Algorithm for central visual field defects unrelated to nerve fiber layer.
    Hirasawa K; Shoji N
    Graefes Arch Clin Exp Ophthalmol; 2016 May; 254(5):845-54. PubMed ID: 26279004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.