These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14691194)

  • 1. Test-retest reliability of clinical Shack-Hartmann measurements.
    Cheng X; Himebaugh NL; Kollbaum PS; Thibos LN; Bradley A
    Invest Ophthalmol Vis Sci; 2004 Jan; 45(1):351-60. PubMed ID: 14691194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a clinical Shack-Hartmann aberrometer.
    Cheng X; Himebaugh NL; Kollbaum PS; Thibos LN; Bradley A
    Optom Vis Sci; 2003 Aug; 80(8):587-95. PubMed ID: 12917578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operator-induced errors in Hartmann-Shack wavefront sensing: model eye study.
    Cervino A; Hosking SL; Dunne MC
    J Cataract Refract Surg; 2007 Jan; 33(1):115-21. PubMed ID: 17189805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeatability of corneal and ocular aberration measurements and changes in aberrations over one week.
    Miranda MA; O'Donnell C; Radhakrishnan H
    Clin Exp Optom; 2009 May; 92(3):253-66. PubMed ID: 19302673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.
    Wei X; Thibos L
    Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the SVOne: A Handheld, Smartphone-Based Autorefractor.
    Ciuffreda KJ; Rosenfield M
    Optom Vis Sci; 2015 Dec; 92(12):1133-9. PubMed ID: 26540478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeatability of ocular wavefront measurement.
    Davies N; Diaz-Santana L; Lara-Saucedo D
    Optom Vis Sci; 2003 Feb; 80(2):142-50. PubMed ID: 12597329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal variations in ocular aberrations of human eyes.
    Chakraborty R; Read SA; Collins MJ
    Curr Eye Res; 2014 Mar; 39(3):271-81. PubMed ID: 24143963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validity of a miniaturized open-field aberrometer.
    Bhatt UK; Sheppard AL; Shah S; Dua HS; Mihashi T; Yamaguchi T; Wolffsohn JS
    J Cataract Refract Surg; 2013 Jan; 39(1):36-40. PubMed ID: 23107833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration.
    Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T
    Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of wavefront measurements using the LADARWave aberrometer.
    Lewis CD; Krueger RR
    J Refract Surg; 2006 Nov; 22(9):S973-9. PubMed ID: 17124900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer.
    Hong X; Thibos LN; Bradley A; Woods RL; Applegate RA
    Optom Vis Sci; 2003 Jan; 80(1):15-25. PubMed ID: 12553540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront analysis of an eye with monocular triplopia and nuclear cataract.
    Fujikado T; Kuroda T; Maeda N; Kim A; Tano Y; Oshika T; Hirohara Y; Mihashi T
    Am J Ophthalmol; 2004 Feb; 137(2):361-3. PubMed ID: 14962436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.