These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 14692486)

  • 1. Neuroethology and life history adaptations of the elasmobranch electric sense.
    Sisneros JA; Tricas TC
    J Physiol Paris; 2002; 96(5-6):379-89. PubMed ID: 14692486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
    Mehaffey WH; Maler L; Turner RW
    J Neurophysiol; 2008 May; 99(5):2641-55. PubMed ID: 18367702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response properties and biological function of the skate electrosensory system during ontogeny.
    Sisneros JA; Tricas TC; Luer CA
    J Comp Physiol A; 1998 Jul; 183(1):87-99. PubMed ID: 9691481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey.
    Wilkens LA; Hofmann MH; Wojtenek W
    J Physiol Paris; 2002; 96(5-6):363-77. PubMed ID: 14692485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields.
    Tricas TC; New JG
    J Comp Physiol A; 1998 Jan; 182(1):89-101. PubMed ID: 9447716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral responses of batoid elasmobranchs to prey-simulating electric fields are correlated to peripheral sensory morphology and ecology.
    Bedore CN; Harris LL; Kajiura SM
    Zoology (Jena); 2014 Apr; 117(2):95-103. PubMed ID: 24290363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex, seasonal, and stress-related variations in elasmobranch corticosterone concentrations.
    Manire CA; Rasmussen LE; Maruska KP; Tricas TC
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):926-35. PubMed ID: 17977765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prey detection mechanism of elasmobranchs.
    Kim D
    Biosystems; 2007 Feb; 87(2-3):322-31. PubMed ID: 17045390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling an electrosensory landscape: behavioral and morphological optimization in elasmobranch prey capture.
    Brown BR
    J Exp Biol; 2002 Apr; 205(Pt 7):999-1007. PubMed ID: 11916995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina).
    Sisneros JA; Tricas TC
    Brain Behav Evol; 2002; 59(3):130-40. PubMed ID: 12119532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosensory optimization to conspecific phasic signals for mating.
    Tricas TC; Michael SW; Sisneros JA
    Neurosci Lett; 1995 Dec; 202(1-2):129-32. PubMed ID: 8787848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant properties in the paddlefish electrosensory system caused by delayed feedback.
    Hofmann MH; Jung SN; Wilkens LA
    Biol Cybern; 2007 Dec; 97(5-6):413-21. PubMed ID: 17926062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the electrosensory morphology of a euryhaline and a marine stingray.
    Camilieri-Asch V; Kempster RM; Collin SP; Johnstone RW; Theiss SM
    Zoology (Jena); 2013 Oct; 116(5):270-6. PubMed ID: 23988133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators.
    Bedore CN; Kajiura SM
    Physiol Biochem Zool; 2013; 86(3):298-311. PubMed ID: 23629880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs.
    Kempster RM; McCarthy ID; Collin SP
    J Fish Biol; 2012 Apr; 80(5):2055-88. PubMed ID: 22497416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroreception in the euryhaline stingray, Dasyatis sabina.
    McGowan DW; Kajiura SM
    J Exp Biol; 2009 May; 212(Pt 10):1544-52. PubMed ID: 19411548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroreception in elasmobranchs: sawfish as a case study.
    Wueringer BE
    Brain Behav Evol; 2012; 80(2):97-107. PubMed ID: 22986826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3044-50. PubMed ID: 19749096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.