These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14692633)

  • 1. Inter-module credit assignment in modular reinforcement learning.
    Samejima K; Doya K; Kawato M
    Neural Netw; 2003 Sep; 16(7):985-94. PubMed ID: 14692633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple model-based reinforcement learning.
    Doya K; Samejima K; Katagiri K; Kawato M
    Neural Comput; 2002 Jun; 14(6):1347-69. PubMed ID: 12020450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple model-based reinforcement learning explains dopamine neuronal activity.
    Bertin M; Schweighofer N; Doya K
    Neural Netw; 2007 Aug; 20(6):668-75. PubMed ID: 17611074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive importance sampling for value function approximation in off-policy reinforcement learning.
    Hachiya H; Akiyama T; Sugiayma M; Peters J
    Neural Netw; 2009 Dec; 22(10):1399-410. PubMed ID: 19216050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive learning via selectionism and Bayesianism, Part II: the sequential case.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):229-36. PubMed ID: 19395235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term memory traces for action bias in human reinforcement learning.
    Bogacz R; McClure SM; Li J; Cohen JD; Montague PR
    Brain Res; 2007 Jun; 1153():111-21. PubMed ID: 17459346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-gated reinforcement learning of internal representations for classification.
    Roelfsema PR; van Ooyen A
    Neural Comput; 2005 Oct; 17(10):2176-214. PubMed ID: 16105222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological implementation of the temporal difference algorithm for reinforcement learning: theoretical comment on O'Reilly et al. (2007).
    Houk JC
    Behav Neurosci; 2007 Feb; 121(1):231-2. PubMed ID: 17324068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning in continuous time and space: interference and not ill conditioning is the main problem when using distributed function approximators.
    Baddeley B
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):950-6. PubMed ID: 18632383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback.
    Ponzi A
    Neural Netw; 2008; 21(2-3):322-30. PubMed ID: 18280108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the sub-cellular signaling pathways involved in reinforcement learning at the striatum.
    Wanjerkhede SM; Bapi RS
    Prog Brain Res; 2008; 168():193-206. PubMed ID: 18166396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning state estimator.
    Morimoto J; Doya K
    Neural Comput; 2007 Mar; 19(3):730-56. PubMed ID: 17298231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning with via-point representation.
    Miyamoto H; Morimoto J; Doya K; Kawato M
    Neural Netw; 2004 Apr; 17(3):299-305. PubMed ID: 15037348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the asymptotic equivalence between differential Hebbian and temporal difference learning.
    Kolodziejski C; Porr B; Wörgötter F
    Neural Comput; 2009 Apr; 21(4):1173-202. PubMed ID: 19018698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified model for perceptual learning.
    Seitz A; Watanabe T
    Trends Cogn Sci; 2005 Jul; 9(7):329-34. PubMed ID: 15955722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus sampling as an exploration mechanism for fast reinforcement learning.
    Vladimirskiy BB; Vasilaki E; Urbanczik R; Senn W
    Biol Cybern; 2009 Apr; 100(4):319-30. PubMed ID: 19360435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition and performance of delayed-response tasks: a neural network model.
    Gisiger T; Kerszberg M; Changeux JP
    Cereb Cortex; 2005 May; 15(5):489-506. PubMed ID: 15342439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.