BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 14692768)

  • 1. On the nature of the multivalency effect: a thermodynamic model.
    Kitov PI; Bundle DR
    J Am Chem Soc; 2003 Dec; 125(52):16271-84. PubMed ID: 14692768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of tether length in nonglycosidically linked bivalent ligands that target sites 2 and 1 of a Shiga-like toxin.
    Kitov PI; Shimizu H; Homans SW; Bundle DR
    J Am Chem Soc; 2003 Mar; 125(11):3284-94. PubMed ID: 12630884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands.
    Kitov PI; Sadowska JM; Mulvey G; Armstrong GD; Ling H; Pannu NS; Read RJ; Bundle DR
    Nature; 2000 Feb; 403(6770):669-72. PubMed ID: 10688205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinities of Shiga toxins 1 and 2 for univalent and oligovalent Pk-trisaccharide analogs measured by electrospray ionization mass spectrometry.
    Kitova EN; Kitov PI; Paszkiewicz E; Kim J; Mulvey GL; Armstrong GD; Bundle DR; Klassen JS
    Glycobiology; 2007 Oct; 17(10):1127-37. PubMed ID: 17686801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-tethered ligand-receptor interactions between surfaces II.
    Zhang CZ; Wang ZG
    Langmuir; 2007 Dec; 23(26):13024-39. PubMed ID: 18001063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of rigid or flexible linkage between two ligands on the effective affinity and avidity for reversible interactions with bivalent receptors.
    Bobrovnik SA
    J Mol Recognit; 2007; 20(4):253-62. PubMed ID: 17847051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of solute and solvent entropies from molecular dynamics simulations.
    Carlsson J; Aqvist J
    Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for describing the thermodynamics of multivalent host-guest interactions at interfaces.
    Huskens J; Mulder A; Auletta T; Nijhuis CA; Ludden MJ; Reinhoudt DN
    J Am Chem Soc; 2004 Jun; 126(21):6784-97. PubMed ID: 15161307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites.
    Lammerts van Bueren A; Boraston AB
    J Mol Biol; 2004 Jul; 340(4):869-79. PubMed ID: 15223327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivalent interactions at interfaces.
    Huskens J
    Curr Opin Chem Biol; 2006 Dec; 10(6):537-43. PubMed ID: 17005436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model and simulation of multivalent binding to fixed ligands.
    Müller KM; Arndt KM; Plückthun A
    Anal Biochem; 1998 Aug; 261(2):149-58. PubMed ID: 9716417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additivity and the physical basis of multivalency effects: a thermodynamic investigation of the calcium EDTA interaction.
    Christensen T; Gooden DM; Kung JE; Toone EJ
    J Am Chem Soc; 2003 Jun; 125(24):7357-66. PubMed ID: 12797810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO
    J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of binding energy in comparative molecular field analysis of isoform selective estrogen receptor ligands.
    Wolohan P; Reichert DE
    J Mol Graph Model; 2004 Sep; 23(1):23-38. PubMed ID: 15331051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of two amphiphilic penicillins with myoglobin in aqueous buffered solutions: a thermodynamic and spectroscopy study.
    Taboada P; Fernández Y; Mosquera V
    Biomacromolecules; 2004; 5(6):2201-11. PubMed ID: 15530034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of protein-DNA interactions: an exact calculation for binding of ligands to a lattice of overlapping sites.
    Saroff HA
    Biopolymers; 1995 Aug; 36(2):121-34. PubMed ID: 7492741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of cationic ligands and proteins with small nucleic acids: analytic treatment of the large coulombic end effect on binding free energy as a function of salt concentration.
    Shkel IA; Ballin JD; Record MT
    Biochemistry; 2006 Jul; 45(27):8411-26. PubMed ID: 16819840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analyses of bindings of Shiga-like toxin to clustered and dispersed Gb3 glyco-arrays on a quartz-crystal microbalance.
    Mori T; Ohtsuka T; Okahata Y
    Langmuir; 2010 Sep; 26(17):14118-25. PubMed ID: 20666463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.