These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 14693381)
41. Isolation, characterization, and transcriptional analysis of the chitinase chi2 Gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var. anisopliae. Baratto CM; Dutra V; Boldo JT; Leiria LB; Vainstein MH; Schrank A Curr Microbiol; 2006 Sep; 53(3):217-21. PubMed ID: 16874542 [TBL] [Abstract][Full Text] [Related]
42. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. Du Y; Li J; Chen S; Xia Y; Jin K Pest Manag Sci; 2024 Feb; 80(2):820-836. PubMed ID: 37794279 [TBL] [Abstract][Full Text] [Related]
43. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Fang W; Pei Y; Bidochka MJ Microbiology (Reading); 2007 Apr; 153(Pt 4):1017-1025. PubMed ID: 17379711 [TBL] [Abstract][Full Text] [Related]
44. Cloning and expression of the gene encoding a novel proteinase from Tritirachium album limber. Samal BB; Karan B; Boone TC; Chen KK; Rohde MF; Stabinsky Y Gene; 1989 Dec; 85(2):329-33. PubMed ID: 2697641 [TBL] [Abstract][Full Text] [Related]
45. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis. Leão MP; Tiago PV; Andreote FD; de Araújo WL; de Oliveira NT Genet Mol Biol; 2015 Mar; 38(1):86-92. PubMed ID: 25983629 [TBL] [Abstract][Full Text] [Related]
46. Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. Wang C; Typas MA; Butt TM FEMS Microbiol Lett; 2002 Aug; 213(2):251-5. PubMed ID: 12167546 [TBL] [Abstract][Full Text] [Related]
47. Characterization of a newly discovered China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) for virulence to termites, isoenzyme, and phylogenic analysis. Dong C; Zhang J; Chen W; Huang H; Hu Y Microbiol Res; 2007; 162(1):53-61. PubMed ID: 16949807 [TBL] [Abstract][Full Text] [Related]
48. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Freimoser FM; Hu G; Leger RJS Microbiology (Reading); 2005 Feb; 151(Pt 2):361-371. PubMed ID: 15699187 [TBL] [Abstract][Full Text] [Related]
49. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
50. A phosphoketolase Mpk1 of bacterial origin is adaptively required for full virulence in the insect-pathogenic fungus Metarhizium anisopliae. Duan Z; Shang Y; Gao Q; Zheng P; Wang C Environ Microbiol; 2009 Sep; 11(9):2351-60. PubMed ID: 19538505 [TBL] [Abstract][Full Text] [Related]
51. Analysis of aminopeptidase and dipeptidylpeptidase IV from the entomopathogenic fungus Metarhizium anisopliae. St Leger RJ; Cooper RM; Charnley AK J Gen Microbiol; 1993 Feb; 139(2):237-43. PubMed ID: 8094738 [TBL] [Abstract][Full Text] [Related]
52. Metarhizium humberi sp. nov. (Hypocreales: Clavicipitaceae), a new member of the PARB clade in the Metarhizium anisopliae complex from Latin America. Luz C; Rocha LFN; Montalva C; Souza DA; Botelho ABRZ; Lopes RB; Faria M; Delalibera I J Invertebr Pathol; 2019 Sep; 166():107216. PubMed ID: 31299226 [TBL] [Abstract][Full Text] [Related]
53. Differential expression of genes involved in entomopathogenicity of the fungi Metarhizium anisopliae var. anisopliae and M. anisopliae var. acridum (Clavicipitaceae). Carneiro-Leão MP; Andreote FD; Araújo WL; Oliveira NT Genet Mol Res; 2011 May; 10(2):769-78. PubMed ID: 21563071 [TBL] [Abstract][Full Text] [Related]
54. Detection of molecular variation in the insect pathogenic fungus Metarhizium using RAPD-PCR. Cobb BD; Clarkson JM FEMS Microbiol Lett; 1993 Sep; 112(3):319-24. PubMed ID: 8224797 [TBL] [Abstract][Full Text] [Related]
55. The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Ghikas DV; Kouvelis VN; Typas MA Arch Microbiol; 2006 Jun; 185(5):393-401. PubMed ID: 16552580 [TBL] [Abstract][Full Text] [Related]
56. Monomorphic subtelomeric DNA in the filamentous fungus, Metarhizium anisopliae,contains a RecQ helicase-like gene. Inglis PW; Rigden DJ; Mello LV; Louis EJ; Valadares-Inglis MC Mol Genet Genomics; 2005 Aug; 274(1):79-90. PubMed ID: 15931527 [TBL] [Abstract][Full Text] [Related]
57. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. Wang S; Fang W; Wang C; St Leger RJ PLoS Pathog; 2011 Jun; 7(6):e1002097. PubMed ID: 21731492 [TBL] [Abstract][Full Text] [Related]
58. Metarhizium alvesii sp. nov.: A new member of the Metarhizium anisopliae species complex. Lopes RB; Souza DA; Rocha LFN; Montalva C; Luz C; Humber RA; Faria M J Invertebr Pathol; 2018 Jan; 151():165-168. PubMed ID: 29224975 [TBL] [Abstract][Full Text] [Related]
59. Identification of group-I introns at three different positions within the 28S rDNA gene of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Mavridou A; Cannone J; Typas MA Fungal Genet Biol; 2000 Nov; 31(2):79-90. PubMed ID: 11170737 [TBL] [Abstract][Full Text] [Related]
60. Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloë festucae. Bryant MK; Schardl CL; Hesse U; Scott B BMC Evol Biol; 2009 Jul; 9():168. PubMed ID: 19615101 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]