BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 14693915)

  • 1. A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor.
    Sonnenburg JL; Altheide TK; Varki A
    Glycobiology; 2004 Apr; 14(4):339-46. PubMed ID: 14693915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs.
    Brinkman-Van der Linden EC; Sjoberg ER; Juneja LR; Crocker PR; Varki N; Varki A
    J Biol Chem; 2000 Mar; 275(12):8633-40. PubMed ID: 10722703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms.
    Angata T; Margulies EH; Green ED; Varki A
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13251-6. PubMed ID: 15331780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of sialic acid-binding proteins: molecular cloning and expression of fish siglec-4.
    Lehmann F; Gäthje H; Kelm S; Dietz F
    Glycobiology; 2004 Nov; 14(11):959-68. PubMed ID: 15229193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-specific expression of Siglec-6 in the placenta.
    Brinkman-Van der Linden EC; Hurtado-Ziola N; Hayakawa T; Wiggleton L; Benirschke K; Varki A; Varki N
    Glycobiology; 2007 Sep; 17(9):922-31. PubMed ID: 17580316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and molecular characterization of two splice variants of a new putative member of the Siglec-3-like subgroup of Siglecs.
    Foussias G; Taylor SM; Yousef GM; Tropak MB; Ordon MH; Diamandis EP
    Biochem Biophys Res Commun; 2001 Jun; 284(4):887-99. PubMed ID: 11409877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates.
    Angata T; Hayakawa T; Yamanaka M; Varki A; Nakamura M
    FASEB J; 2006 Oct; 20(12):1964-73. PubMed ID: 17012248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization, tissue expression, and mapping of a novel Siglec-like gene (SLG2) with three splice variants.
    Yousef GM; Ordon MH; Foussias G; Diamandis EP
    Biochem Biophys Res Commun; 2001 Jun; 284(4):900-10. PubMed ID: 11409878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Genomic Events Altering Hominin SIGLEC Biology and Innate Immunity Predated the Common Ancestor of Humans and Archaic Hominins.
    Khan N; de Manuel M; Peyregne S; Do R; Prufer K; Marques-Bonet T; Varki N; Gagneux P; Varki A
    Genome Biol Evol; 2020 Jul; 12(7):1040-1050. PubMed ID: 32556248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways.
    Angata T; Varki A
    J Biol Chem; 2000 Jul; 275(29):22127-35. PubMed ID: 10801860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery, classification, evolution and diversity of Siglecs.
    Angata T; Varki A
    Mol Aspects Med; 2023 Apr; 90():101117. PubMed ID: 35989204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters.
    Angata T; Hingorani R; Varki NM; Varki A
    J Biol Chem; 2001 Nov; 276(48):45128-36. PubMed ID: 11579105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs.
    Nguyen DH; Ball ED; Varki A
    Exp Hematol; 2006 Jun; 34(6):728-35. PubMed ID: 16728277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene conversions are frequent but not under positive selection in the Siglec gene families of primates.
    Zid M; Drouin G
    Genome; 2014 Jun; 57(6):317-25. PubMed ID: 25166301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible Influences of Endogenous and Exogenous Ligands on the Evolution of Human Siglecs.
    Angata T
    Front Immunol; 2018; 9():2885. PubMed ID: 30564250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion polymorphism of SIGLEC14 and its functional implications.
    Yamanaka M; Kato Y; Angata T; Narimatsu H
    Glycobiology; 2009 Aug; 19(8):841-6. PubMed ID: 19369701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic differences between humans and great apes.
    Gagneux P; Varki A
    Mol Phylogenet Evol; 2001 Jan; 18(1):2-13. PubMed ID: 11161737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.
    Fujita A; Sato C; Münster-Kühnel AK; Gerardy-Schahn R; Kitajima K
    Anal Biochem; 2005 Feb; 337(1):12-21. PubMed ID: 15649371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siglecs--the major subfamily of I-type lectins.
    Varki A; Angata T
    Glycobiology; 2006 Jan; 16(1):1R-27R. PubMed ID: 16014749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of allelic variants of the bovine immune regulatory molecule CEACAM1 implies a pathogen-driven evolution.
    Kammerer R; Popp T; Singer BB; Schlender J; Zimmermann W
    Gene; 2004 Sep; 339():99-109. PubMed ID: 15363850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.