BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 14695265)

  • 1. Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes.
    Becker HM; Bröer S; Deitmer JW
    Biophys J; 2004 Jan; 86(1 Pt 1):235-47. PubMed ID: 14695265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis.
    Thomas C; Bishop D; Moore-Morris T; Mercier J
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E916-22. PubMed ID: 17609257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
    Blanchard MG; Longpré JP; Wallendorff B; Lapointe JY
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1464-72. PubMed ID: 18829896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage dependence of H+ buffering mediated by sodium bicarbonate cotransport expressed in Xenopus oocytes.
    Becker HM; Deitmer JW
    J Biol Chem; 2004 Jul; 279(27):28057-62. PubMed ID: 15123668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCT1 and MCT4 Expression and Lactate Flux Activity Increase During White and Brown Adipogenesis and Impact Adipocyte Metabolism.
    Petersen C; Nielsen MD; Andersen ES; Basse AL; Isidor MS; Markussen LK; Viuff BM; Lambert IH; Hansen JB; Pedersen SF
    Sci Rep; 2017 Oct; 7(1):13101. PubMed ID: 29026134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.
    Bröer S; Schneider HP; Bröer A; Rahman B; Hamprecht B; Deitmer JW
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):167-74. PubMed ID: 9639576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase.
    Becker HM; Hirnet D; Fecher-Trost C; Sültemeyer D; Deitmer JW
    J Biol Chem; 2005 Dec; 280(48):39882-9. PubMed ID: 16174776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: Role of monocarboxylate transporters.
    Wang Q; Darling IM; Morris ME
    J Pharmacol Exp Ther; 2006 Aug; 318(2):751-61. PubMed ID: 16707723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.
    Klier M; Andes FT; Deitmer JW; Becker HM
    J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.
    Theparambil SM; Deitmer JW
    Glia; 2015 Sep; 63(9):1581-94. PubMed ID: 25820238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1.
    Aspatwar A; Tolvanen MEE; Schneider HP; Becker HM; Narkilahti S; Parkkila S; Deitmer JW
    FEBS Open Bio; 2019 Jul; 9(7):1204-1211. PubMed ID: 31033227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability.
    Galić S; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochem J; 2003 Dec; 376(Pt 2):413-22. PubMed ID: 12946269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrogenic Na/HCO3 cotransporter.
    Boron WF; Fong P; Hediger MA; Boulpaep EL; Romero MF
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):445-56. PubMed ID: 9261985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859.
    Heidtmann H; Ruminot I; Becker HM; Deitmer JW
    Eur J Pharmacol; 2015 Sep; 762():344-9. PubMed ID: 26027796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.
    Nguyen TT; Bonanno JA
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8086-93. PubMed ID: 21896839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes.
    Ideno M; Kobayashi M; Sasaki S; Futagi Y; Narumi K; Furugen A; Iseki K
    Life Sci; 2018 Jan; 192():110-114. PubMed ID: 29154783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes.
    Peetz J; Barros LF; San Martín A; Becker HM
    Pflugers Arch; 2015 Jul; 467(7):1469-1480. PubMed ID: 25118990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional diversity of electrogenic Na+-HCO3- cotransport in ventricular myocytes from rat, rabbit and guinea pig.
    Yamamoto T; Swietach P; Rossini A; Loh SH; Vaughan-Jones RD; Spitzer KW
    J Physiol; 2005 Jan; 562(Pt 2):455-75. PubMed ID: 15550467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development.
    Jansen S; Esmaeilpour T; Pantaleon M; Kaye PL
    Reproduction; 2006 Mar; 131(3):469-79. PubMed ID: 16514190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1.
    Müller F; Huber K; Pfannkuche H; Aschenbach JR; Breves G; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1139-46. PubMed ID: 12381528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.