BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 14695307)

  • 1. NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): applications to enzyme and mitochondrial reaction kinetics, in vitro.
    Joubert F; Fales HM; Wen H; Combs CA; Balaban RS
    Biophys J; 2004 Jan; 86(1 Pt 1):629-45. PubMed ID: 14695307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts.
    Moreno A; Kuzmiak-Glancy S; Jaimes R; Kay MW
    Sci Rep; 2017 Mar; 7():45744. PubMed ID: 28361886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP).
    Combs CA; Balaban RS
    Biophys J; 2001 Apr; 80(4):2018-28. PubMed ID: 11259315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Inhibition of NADH-dehydrogenase by low concentrations of NAD+].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Dec; 56(12):2253-60. PubMed ID: 1807407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria.
    Holowiecki A; Fioravanti CF
    J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.
    Brandes R; Bers DM
    Biophys J; 1996 Aug; 71(2):1024-35. PubMed ID: 8842239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-dependent fluorescence recovery after photobleaching of NADH: in vivo and in vitro applications to the study of enzyme kinetics.
    Combs CA; Balaban RS
    Methods Enzymol; 2004; 385():257-86. PubMed ID: 15130744
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.
    Piersma SR; Visser AJ; de Vries S; Duine JA
    Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.
    Wang J; Yang C; Chen X; Bao B; Zhang X; Li D; Du X; Shi R; Yang J; Zhu R
    Biotechnol Lett; 2016 Aug; 38(8):1315-20. PubMed ID: 27146212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel superoxide radical generator in heart mitochondria.
    Nohl H
    FEBS Lett; 1987 Apr; 214(2):269-73. PubMed ID: 3032683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.