These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14695307)

  • 21. Mitochondria catalyze the reduction of NAD by reduced methylviologen.
    Nagata S; Günther H; Bader J; Simon H
    FEBS Lett; 1987 Jan; 210(1):66-70. PubMed ID: 3803582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Evaluation of structuro-functional heterogeneity of isolated mitochondria from the normal and the ischemic myocardium].
    Balasiavichius RV; Toleĭkis AI; Prashkiavichius AK; Iasaĭtis AA
    Biokhimiia; 1985 Oct; 50(10):1685-93. PubMed ID: 3000462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes.
    Sauer LA; Chapman JC; Dauchy RT
    Endocrinology; 1994 Feb; 134(2):751-9. PubMed ID: 8299570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling NADH turnover in plant mitochondria.
    Hagedorn PH; Flyvbjerg H; Møller IM
    Physiol Plant; 2004 Mar; 120(3):370-385. PubMed ID: 15032834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of NAD(+) and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis.
    Xie W; Xu A; Yeung ES
    Anal Chem; 2009 Feb; 81(3):1280-4. PubMed ID: 19178345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering.
    Territo PR; French SA; Dunleavy MC; Evans FJ; Balaban RS
    J Biol Chem; 2001 Jan; 276(4):2586-99. PubMed ID: 11029457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of malate dehydrogenase and NADH channelling to complex I.
    Ovádi J; Huang Y; Spivey HO
    J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of the reductive half-reaction of the iron-sulfur flavoenzyme CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase.
    Gassner GT; Johnson DA; Liu HW; Ballou DP
    Biochemistry; 1996 Jun; 35(24):7752-61. PubMed ID: 8672475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging.
    Olgun A
    Biogerontology; 2009 Aug; 10(4):531-4. PubMed ID: 18932012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant succinic semialdehyde dehydrogenase: dissection of nucleotide binding by surface plasmon resonance and fluorescence spectroscopy.
    Busch K; Piehler J; Fromm H
    Biochemistry; 2000 Aug; 39(33):10110-7. PubMed ID: 10955999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo NADH fluorescence.
    Ince C; Coremans JM; Bruining HA
    Adv Exp Med Biol; 1992; 317():277-96. PubMed ID: 1288134
    [No Abstract]   [Full Text] [Related]  

  • 34. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum.
    Moxley MA; Beard DA; Bazil JN
    J Biol Chem; 2016 Feb; 291(6):2712-30. PubMed ID: 26644471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial NADH fluorescence is enhanced by complex I binding.
    Blinova K; Levine RL; Boja ES; Griffiths GL; Shi ZD; Ruddy B; Balaban RS
    Biochemistry; 2008 Sep; 47(36):9636-45. PubMed ID: 18702505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching.
    Lengert L; Lengert N; Drossel B; Cardoso MC; Muster B; Nowak D; Rapp A
    Biophys J; 2015 Oct; 109(8):1551-64. PubMed ID: 26488646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of NADH transfer among dehydrogenases.
    Arias WM; Pettersson H; Pettersson G
    Biochim Biophys Acta; 1998 Jun; 1385(1):149-56. PubMed ID: 9630586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correction for inner filter effects in turbid samples: fluorescence assays of mitochondrial NADH.
    French SA; Territo PR; Balaban RS
    Am J Physiol; 1998 Sep; 275(3):C900-9. PubMed ID: 9730975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds.
    Yamane T
    J Biosci Bioeng; 2019 Sep; 128(3):337-343. PubMed ID: 30956102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate channeling of NADH in mitochondrial redox processes.
    Ushiroyama T; Fukushima T; Styre JD; Spivey HO
    Curr Top Cell Regul; 1992; 33():291-307. PubMed ID: 1499337
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.