These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 14695566)

  • 61. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route.
    Du J; Zhang J; Liu Z; Han B; Jiang T; Huang Y
    Langmuir; 2006 Jan; 22(3):1307-12. PubMed ID: 16430298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes.
    Li YH; Zhao YM; Ma RZ; Zhu YQ; Fisher N; Jin YZ; Zhang XP
    J Phys Chem B; 2006 Sep; 110(37):18191-5. PubMed ID: 16970435
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis of one-dimensional silver oxide nanoparticle arrays and silver nanorods templated by Langmuir monolayers.
    Liu HG; Xiao F; Wang CW; Xue Q; Chen X; Lee YI; Hao J; Jiang J
    J Colloid Interface Sci; 2007 Oct; 314(1):297-303. PubMed ID: 17570381
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Family of multifunctional layered-lanthanum crystalline nanowires with hierarchical pores: hydrothermal synthesis and applications.
    Wang PP; Bai B; Hu S; Zhuang J; Wang X
    J Am Chem Soc; 2009 Nov; 131(46):16953-60. PubMed ID: 19886618
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag+-exchanged zeolite X (FAU). Silver atoms have reduced ethylene to give CH2 2- carbanions at framework oxide vacancies.
    Lee YM; Choi SJ; Kim Y; Seff K
    J Phys Chem B; 2005 Nov; 109(43):20137-44. PubMed ID: 16853603
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High quality self-assembly magnetite (Fe(3)O(4)) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process.
    Gong J; Li S; Zhang D; Zhang X; Liu C; Tong Z
    Chem Commun (Camb); 2010 May; 46(20):3514-6. PubMed ID: 20376393
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Conversion of potassium titanate nanowires into titanium oxynitride nanotubes.
    Wei YJ; Peng CW; Cheng TM; Lin HK; Chen YL; Lee CY; Chiu HT
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3804-12. PubMed ID: 21939190
    [TBL] [Abstract][Full Text] [Related]  

  • 71. One-dimensional nanostructures of metals: large-scale synthesis and some potential applications.
    Chen J; Wiley BJ; Xia Y
    Langmuir; 2007 Apr; 23(8):4120-9. PubMed ID: 17249708
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis and structure of pillared molybdates and tungstates with framework layers.
    Nicholls JL; Hulse SE; Callear SK; Tizzard GJ; Stephenson RA; Hursthouse MB; Clegg W; Harrington RW; Fogg AM
    Inorg Chem; 2010 Sep; 49(18):8545-51. PubMed ID: 20718486
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine.
    Li Z; Lai X; Wang H; Mao D; Xing C; Wang D
    Nanotechnology; 2009 Jun; 20(24):245603. PubMed ID: 19471078
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Formation of well-aligned ZnGa(2)O(4) nanowires from Ga(2)O(3)/ZnO core-shell nanowires via a Ga(2)O(3)/ZnGa(2)O(4) epitaxial relationship.
    Chang KW; Wu JJ
    J Phys Chem B; 2005 Jul; 109(28):13572-7. PubMed ID: 16852699
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts.
    Xue S; Zhang X; Huang R; Zhuang H; Xue C
    Dalton Trans; 2008 Aug; (32):4296-302. PubMed ID: 18682869
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route.
    Xiong Y; Xie Y; Li Z; Wu C
    Chemistry; 2003 Apr; 9(7):1645-51. PubMed ID: 12658664
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties.
    Zhu H; Yang D; Yu G; Zhang H; Jin D; Yao K
    J Phys Chem B; 2006 Apr; 110(15):7631-4. PubMed ID: 16610852
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties.
    Cheng L; Shao M; Wang X; Hu H
    Chemistry; 2009; 15(10):2310-6. PubMed ID: 19156810
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural characterization and reactivity of gamma-octamolybdate functionalized by proline.
    Cartuyvels E; Van Hecke K; Van Meervelt L; Görller-Walrand C; Parac-Vogt TN
    J Inorg Biochem; 2008 Aug; 102(8):1589-98. PubMed ID: 18374986
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A general precipitation strategy for large-scale synthesis of molybdate nanostructures.
    Peng C; Gao L; Yang S; Sun J
    Chem Commun (Camb); 2008 Nov; (43):5601-3. PubMed ID: 18997965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.