BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 14695607)

  • 1. A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53.
    Salvatella X; Martinell M; Gairí M; Mateu MG; Feliz M; Hamilton AD; De Mendoza J; Giralt E
    Angew Chem Int Ed Engl; 2004 Jan; 43(2):196-8. PubMed ID: 14695607
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of flexibility in protein-ligand interactions: the example of p53 tetramerization domain.
    Gordo S; Martos V; Vilaseca M; Menéndez M; de Mendoza J; Giralt E
    Chem Asian J; 2011 Jun; 6(6):1463-9. PubMed ID: 21626703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic ligands able to interact with the p53 tetramerization domain. Towards understanding a protein surface recognition event.
    Martinell M; Salvatella X; Fernández-Carneado J; Gordo S; Feliz M; Menéndez M; Giralt E
    Chembiochem; 2006 Jul; 7(7):1105-13. PubMed ID: 16795116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin.
    De Grandis V; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2007; 20(4):215-26. PubMed ID: 17703463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forewarned is four-armed.
    Surridge C
    Nature; 1994 Dec; 372(6505):482. PubMed ID: 7984245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association.
    Sachchidanand ; Resnick-Silverman L; Yan S; Mutjaba S; Liu WJ; Zeng L; Manfredi JJ; Zhou MM
    Chem Biol; 2006 Jan; 13(1):81-90. PubMed ID: 16426974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library.
    Kawaguchi T; Kato S; Otsuka K; Watanabe G; Kumabe T; Tominaga T; Yoshimoto T; Ishioka C
    Oncogene; 2005 Oct; 24(46):6976-81. PubMed ID: 16007150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of RNA to p53 regulates its oligomerization and DNA-binding activity.
    Yoshida Y; Izumi H; Torigoe T; Ishiguchi H; Yoshida T; Itoh H; Kohno K
    Oncogene; 2004 May; 23(25):4371-9. PubMed ID: 15064727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR.
    Petros AM; Gunasekera A; Xu N; Olejniczak ET; Fesik SW
    FEBS Lett; 2004 Feb; 559(1-3):171-4. PubMed ID: 14960327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
    Stros M; Muselíková-Polanská E; Pospísilová S; Strauss F
    Biochemistry; 2004 Jun; 43(22):7215-25. PubMed ID: 15170359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational screening and design of S100B ligand to block S100B-p53 interaction.
    Whitlow JL; Varughese JF; Zhou Z; Bartolotti LJ; Li Y
    J Mol Graph Model; 2009; 27(8):969-77. PubMed ID: 19324580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of cisplatin-damaged DNA by p53 protein: critical role of the p53 C-terminal domain.
    Pivonková H; Brázdová M; Kaspárková J; Brabec V; Fojta M
    Biochem Biophys Res Commun; 2006 Jan; 339(2):477-84. PubMed ID: 16300733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl.
    Xu H; Tai J; Ye H; Kang CB; Yoon HS
    Biochem Biophys Res Commun; 2006 Mar; 341(4):938-44. PubMed ID: 16455050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative binding of tetrameric p53 to DNA.
    Weinberg RL; Veprintsev DB; Fersht AR
    J Mol Biol; 2004 Aug; 341(5):1145-59. PubMed ID: 15321712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.