BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14696193)

  • 1. Quantifying the effect of burial of amino acid residues on protein stability.
    Zhou H; Zhou Y
    Proteins; 2004 Feb; 54(2):315-22. PubMed ID: 14696193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability scale and atomic solvation parameters extracted from 1023 mutation experiments.
    Zhou H; Zhou Y
    Proteins; 2002 Dec; 49(4):483-92. PubMed ID: 12402358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of accessible surface of residues in proteins.
    Lins L; Thomas A; Brasseur R
    Protein Sci; 2003 Jul; 12(7):1406-17. PubMed ID: 12824487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence.
    Gilis D; Rooman M
    J Mol Biol; 1997 Sep; 272(2):276-90. PubMed ID: 9299354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting "reverse hydrophobic effect": applicable only to coil mutations at the surface.
    Gromiha MM
    Biopolymers; 2009 Jul; 91(7):591-9. PubMed ID: 19283830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid architecture and the distribution of polar atoms on the surfaces of proteins.
    Shanahan HP; Thornton JM
    Biopolymers; 2005 Aug; 78(6):318-28. PubMed ID: 15898105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures.
    Chelli R; Gervasio FL; Procacci P; Schettino V
    Proteins; 2004 Apr; 55(1):139-51. PubMed ID: 14997548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying folding nucleus based on residue contact networks of proteins.
    Li J; Wang J; Wang W
    Proteins; 2008 Jun; 71(4):1899-907. PubMed ID: 18175318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobicity of amino acid subgroups in proteins.
    Lesser GJ; Rose GD
    Proteins; 1990; 8(1):6-13. PubMed ID: 2217164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing.
    Anil B; Sato S; Cho JH; Raleigh DP
    J Mol Biol; 2005 Dec; 354(3):693-705. PubMed ID: 16246369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer.
    Zoete V; Meuwly M
    J Comput Chem; 2006 Nov; 27(15):1843-57. PubMed ID: 16981237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native protein sequences are designed to destabilize folding intermediates.
    Isogai Y
    Biochemistry; 2006 Feb; 45(8):2488-92. PubMed ID: 16489741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic features of amino acid residues in coiled-coil protein structures.
    Gromiha MM; Parry DA
    Biophys Chem; 2004 Oct; 111(2):95-103. PubMed ID: 15381307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.
    Liang S; Zhang J; Zhang S; Guo H
    Proteins; 2004 Nov; 57(3):548-57. PubMed ID: 15382230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic effect on the stability and folding of a hyperthermophilic protein.
    Dong H; Mukaiyama A; Tadokoro T; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2008 Apr; 378(1):264-72. PubMed ID: 18353366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy.
    López-Llano J; Campos LA; Sancho J
    Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimates of the loss of main-chain conformational entropy of different residues on protein folding.
    Pal D; Chakrabarti P
    Proteins; 1999 Aug; 36(3):332-9. PubMed ID: 10409826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QBES: predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization.
    Xu Z; Zhang C; Liu S; Zhou Y
    Proteins; 2006 Jun; 63(4):961-6. PubMed ID: 16514609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.