These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1469712)

  • 1. Analysis of the role of phosphate oxygens in the group I intron from Tetrahymena.
    Christian EL; Yarus M
    J Mol Biol; 1992 Dec; 228(3):743-58. PubMed ID: 1469712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena.
    Christian EL; Yarus M
    Biochemistry; 1993 May; 32(17):4475-80. PubMed ID: 7683490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a group I ribozyme domain: principles of RNA packing.
    Cate JH; Gooding AR; Podell E; Zhou K; Golden BL; Kundrot CE; Cech TR; Doudna JA
    Science; 1996 Sep; 273(5282):1678-85. PubMed ID: 8781224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phosphorothioate at the 3' splice-site inhibits the second splicing step in a group I intron.
    Suh E; Waring RB
    Nucleic Acids Res; 1992 Dec; 20(23):6303-9. PubMed ID: 1282238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of P9 and stem-loop structures downstream from the catalytic core affects both 5' and 3' splicing activities in a group-I intron.
    Caprara MG; Waring RB
    Gene; 1994 May; 143(1):29-37. PubMed ID: 8200535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two universally conserved adenosines of the group I intron that are important for self-splicing but not for core catalytic activity.
    Williams KP; Fujimoto DN; Inoue T
    J Biochem; 1994 Jan; 115(1):126-30. PubMed ID: 8188618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Important 2'-hydroxyl groups within the core of a group I intron.
    Caprara MG; Waring RB
    Biochemistry; 1993 Apr; 32(14):3604-10. PubMed ID: 8466902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements of a group I intron for reactions at the 3' splice site.
    van der Horst G; Inoue T
    J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A preorganized active site in the crystal structure of the Tetrahymena ribozyme.
    Golden BL; Gooding AR; Podell ER; Cech TR
    Science; 1998 Oct; 282(5387):259-64. PubMed ID: 9841391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme.
    Ortoleva-Donnelly L; Szewczak AA; Gutell RR; Strobel SA
    RNA; 1998 May; 4(5):498-519. PubMed ID: 9582093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence effects on RNA bulge-induced helix bending and a conserved five-nucleotide bulge from the group I introns.
    Luebke KJ; Tinoco I
    Biochemistry; 1996 Sep; 35(36):11677-84. PubMed ID: 8794748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.
    Guo F; Cech TR
    RNA; 2002 May; 8(5):647-58. PubMed ID: 12022231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.