BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14697281)

  • 61. Shear-dependent suppression of platelet thrombus formation by phosphodiesterase 3 inhibition requires low levels of concomitant Gs-coupled receptor stimulation.
    Yoshida H; Okamura Y; Watanabe N; Ikeda Y; Handa M
    Thromb Haemost; 2011 Mar; 105(3):487-95. PubMed ID: 21136009
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor.
    Mori D; Yano K; Tsubota K; Ishikawa T; Wada S; Yamaguchi T
    Thromb Haemost; 2008 Jan; 99(1):108-15. PubMed ID: 18217141
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of Integrelin on platelet function in flow models of arterial thrombosis.
    Kamat SG; Turner NA; Konstantopoulos K; Hellums JD; McIntire LV; Kleiman NS; Moake JL
    J Cardiovasc Pharmacol; 1997 Feb; 29(2):156-63. PubMed ID: 9057063
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increased shear stress- and ristocetin-induced binding of von Willebrand factor to platelets in cord compared with adult plasma.
    Rehak T; Cvirn G; Gallistl S; Leschnik B; Köstenberger M; Katzer H; Ribitsch V; Muntean W
    Thromb Haemost; 2004 Oct; 92(4):682-7. PubMed ID: 15467896
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis.
    Pareti FI; Lattuada A; Bressi C; Zanobini M; Sala A; Steffan A; Ruggeri ZM
    Circulation; 2000 Sep; 102(11):1290-5. PubMed ID: 10982545
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhanced shear-induced platelet aggregation in acute myocardial infarction.
    Goto S; Sakai H; Goto M; Ono M; Ikeda Y; Handa S; Ruggeri ZM
    Circulation; 1999 Feb; 99(5):608-13. PubMed ID: 9950656
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adrenaline potentiates type 2B von Willebrand factor-induced activation of human platelets by enhancing both the formation and action of thromboxanes.
    Francesconi M; Scapin M; Casonato A; Girolami A; Deana R
    Thromb Res; 2000 Nov; 100(4):293-303. PubMed ID: 11113273
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients.
    Ando M; Iwata A; Ozeki Y; Tsuchiya K; Akiba T; Nihei H
    Kidney Int; 2002 Nov; 62(5):1757-63. PubMed ID: 12371977
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cell-derived microparticles and von Willebrand factor in Brazilian renal transplant recipients.
    Martins SR; Alves LV; Cardoso CN; Silva LG; Nunes FF; de Lucas Júnior FDM; Silva AC; Dusse LM; Alpoim PN; Mota AP
    Nephrology (Carlton); 2019 Dec; 24(12):1304-1312. PubMed ID: 31482669
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition by Ethanol of Shear Stress-Induced Formation of Platelet Thrombi in Whole Blood.
    Ekawa K; Marumo M; Wakabayashi I
    Alcohol Alcohol; 2019 Jan; 54(1):13-18. PubMed ID: 30462159
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Material strengths of shear-induced platelet aggregation clots and coagulation clots.
    Kim DA; Ku DN
    Sci Rep; 2024 May; 14(1):11460. PubMed ID: 38769378
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Water-soluble tomato concentrate modulates shear-induced platelet aggregation and blood flow
    Liu L; Xiao S; Wang Y; Wang Y; Liu L; Sun Z; Zhang Q; Yin X; Liao F; You Y; Zhang X
    Front Nutr; 2022; 9():961301. PubMed ID: 36118749
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Function and clinical significance of platelet-derived microparticles.
    Nomura S
    Int J Hematol; 2001 Dec; 74(4):397-404. PubMed ID: 11794694
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A programmable, computer-controlled cone-plate viscometer for the application of pulsatile shear stress to platelet suspensions.
    Sutera SP; Nowak MD; Joist JH; Zeffren DJ; Bauman JE
    Biorheology; 1988; 25(3):449-59. PubMed ID: 3250627
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Platelet reactions to modified surfaces under dynamic conditions.
    Rhodes NP; Shortland AP; Rattray A; Williams DF
    J Mater Sci Mater Med; 1998 Dec; 9(12):767-72. PubMed ID: 15348937
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Platelet storage media change the expression characteristics of the platelet-derived microparticles.
    Yari F; Azadpour S; Shiri R
    Indian J Hematol Blood Transfus; 2014 Sep; 30(3):169-74. PubMed ID: 25114402
    [TBL] [Abstract][Full Text] [Related]  

  • 78. VAMP3 and SNAP23 as Potential Targets for Preventing the Disturbed Flow-Accelerated Thrombus Formation.
    Zhu JJ; Jiang ZT; Liu C; Xi YF; Wang J; Yang FF; Yao WJ; Pang W; Han LL; Zhang YH; Sun AQ; Zhou J
    Front Cell Dev Biol; 2020; 8():576826. PubMed ID: 33224946
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inhibition of high shear arterial thrombosis by charged nanoparticles.
    Griffin MT; Zhu Y; Liu Z; Aidun CK; Ku DN
    Biomicrofluidics; 2018 Jul; 12(4):042210. PubMed ID: 29887934
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis.
    Griffin MT; Kim D; Ku DN
    Biomicrofluidics; 2019 Sep; 13(5):054106. PubMed ID: 31592301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.