These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14697361)

  • 1. Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro.
    Tonge DA; Pountney DJ; Leclere PG; Zhu N; Pizzey JA
    Dev Biol; 2004 Jan; 265(1):169-80. PubMed ID: 14697361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed axonal growth towards axolotl limb blastemas in vitro.
    Tonge DA; Leclere PG
    Neuroscience; 2000; 100(1):201-11. PubMed ID: 10996470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focal expression of glial cell line-derived neurotrophic factor in developing mouse limb bud.
    Wright DE; Snider WD
    Cell Tissue Res; 1996 Nov; 286(2):209-17. PubMed ID: 8854889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic limb buds derived neurotrophins on the survival of neurons and the growth of axons in culture in vitro.
    Liu H; Hong G; Wang F; Chen F
    J Tongji Med Univ; 1998; 18(4):212-5. PubMed ID: 10806848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oriented growth of regenerating axons in axolotl forelimbs is consistent with guidance by diffusible factors from distal nerve stumps.
    Aaronson OS; Golding JP; Tonge DA
    Neuroscience; 1995 May; 66(1):201-13. PubMed ID: 7637870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compatible limb patterning mechanisms in urodeles and anurans.
    Sessions SK; Gardiner DM; Bryant SV
    Dev Biol; 1989 Feb; 131(2):294-301. PubMed ID: 2912797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl.
    Bryant DM; Sousounis K; Farkas JE; Bryant S; Thao N; Guzikowski AR; Monaghan JR; Levin M; Whited JL
    Dev Biol; 2017 Apr; 424(1):1-9. PubMed ID: 28235582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.
    Mitogawa K; Makanae A; Satoh A; Satoh A
    PLoS One; 2015; 10(7):e0133375. PubMed ID: 26186213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotrophins are required for nerve growth during development.
    Tucker KL; Meyer M; Barde YA
    Nat Neurosci; 2001 Jan; 4(1):29-37. PubMed ID: 11135642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of initiation and early events for muscle development in the Xenopus limb bud.
    Satoh A; Sakamaki K; Ide H; Tamura K
    Dev Dyn; 2005 Dec; 234(4):846-57. PubMed ID: 16245333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal growth towards Xenopus skin in vitro is mediated by matrix metalloproteinase activity.
    Tonge D; Zhu N; Lynham S; Leclere P; Snape A; Brewer A; Schlomann U; Ferdous T; Tennyson C; Bartsch JW; Ward M; Pizzey J
    Eur J Neurosci; 2013 Feb; 37(4):519-31. PubMed ID: 23216618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis.
    Brun RB
    Dev Biol; 1981 Nov; 88(1):192-9. PubMed ID: 7286445
    [No Abstract]   [Full Text] [Related]  

  • 15. Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut.
    Ratcliffe EM; Setru SU; Chen JJ; Li ZS; D'Autréaux F; Gershon MD
    J Comp Neurol; 2006 Oct; 498(5):567-80. PubMed ID: 16917820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common mechanisms in vertebrate axonal navigation: retinal transplants between distantly related amphibia.
    Harris WA; Cole J
    J Neurogenet; 1984 Apr; 1(2):127-40. PubMed ID: 6536722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte.
    Nath K; Elinson RP
    Gene Expr Patterns; 2007 Jan; 7(1-2):197-201. PubMed ID: 16920404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The precision of pathway selection by developing peripheral axons in the axolotl.
    Freeman JM; Davey DF
    J Embryol Exp Morphol; 1986 Feb; 91():117-34. PubMed ID: 3711780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons.
    Helmbacher F; Schneider-Maunoury S; Topilko P; Tiret L; Charnay P
    Development; 2000 Aug; 127(15):3313-24. PubMed ID: 10887087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.