These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
569 related articles for article (PubMed ID: 14697759)
1. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. Hanna M; Chow BL; Morey NJ; Jinks-Robertson S; Doetsch PW; Xiao W DNA Repair (Amst); 2004 Jan; 3(1):51-9. PubMed ID: 14697759 [TBL] [Abstract][Full Text] [Related]
2. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Xiao W; Chow BL; Hanna M; Doetsch PW Mutat Res; 2001 Dec; 487(3-4):137-47. PubMed ID: 11738940 [TBL] [Abstract][Full Text] [Related]
3. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Swanson RL; Morey NJ; Doetsch PW; Jinks-Robertson S Mol Cell Biol; 1999 Apr; 19(4):2929-35. PubMed ID: 10082560 [TBL] [Abstract][Full Text] [Related]
4. Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. Admiraal SJ; Eyler DE; Baldwin MR; Brines EM; Lohans CT; Schofield CJ; O'Brien PJ J Biol Chem; 2019 Sep; 294(37):13629-13637. PubMed ID: 31320474 [TBL] [Abstract][Full Text] [Related]
5. The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. Hendricks CA; Razlog M; Matsuguchi T; Goyal A; Brock AL; Engelward BP DNA Repair (Amst); 2002 Aug; 1(8):645-59. PubMed ID: 12509287 [TBL] [Abstract][Full Text] [Related]
6. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Gellon L; Barbey R; Auffret van der Kemp P; Thomas D; Boiteux S Mol Genet Genomics; 2001 Aug; 265(6):1087-96. PubMed ID: 11523781 [TBL] [Abstract][Full Text] [Related]
7. Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Ma W; Resnick MA; Gordenin DA Nucleic Acids Res; 2008 Apr; 36(6):1836-46. PubMed ID: 18267974 [TBL] [Abstract][Full Text] [Related]
8. Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Kunz BA; Henson ES; Karthikeyan R; Kuschak T; McQueen SA; Scott CA; Xiao W Environ Mol Mutagen; 1998; 32(2):173-8. PubMed ID: 9776180 [TBL] [Abstract][Full Text] [Related]
9. Base excision repair activities required for yeast to attain a full chronological life span. Maclean MJ; Aamodt R; Harris N; Alseth I; Seeberg E; Bjørås M; Piper PW Aging Cell; 2003 Apr; 2(2):93-104. PubMed ID: 12882322 [TBL] [Abstract][Full Text] [Related]
10. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage. Kanno S; Iwai S; Takao M; Yasui A Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605 [TBL] [Abstract][Full Text] [Related]
11. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Eide L; Bjørås M; Pirovano M; Alseth I; Berdal KG; Seeberg E Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10735-40. PubMed ID: 8855249 [TBL] [Abstract][Full Text] [Related]
12. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Alseth I; Eide L; Pirovano M; Rognes T; Seeberg E; Bjørås M Mol Cell Biol; 1999 May; 19(5):3779-87. PubMed ID: 10207101 [TBL] [Abstract][Full Text] [Related]
13. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. Phadnis N; Mehta R; Meednu N; Sia EA DNA Repair (Amst); 2006 Jul; 5(7):829-39. PubMed ID: 16730479 [TBL] [Abstract][Full Text] [Related]
14. The repair of DNA methylation damage in Saccharomyces cerevisiae. Xiao W; Chow BL; Rathgeber L Curr Genet; 1996 Dec; 30(6):461-8. PubMed ID: 8939806 [TBL] [Abstract][Full Text] [Related]
15. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Xiao W; Samson L Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2117-21. PubMed ID: 7681584 [TBL] [Abstract][Full Text] [Related]
16. Use of yeast for detection of endogenous abasic lesions, their source, and their repair. Boiteux S; Guillet M Methods Enzymol; 2006; 408():79-91. PubMed ID: 16793364 [TBL] [Abstract][Full Text] [Related]
17. Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. Xiao W; Chow BL Curr Genet; 1998 Feb; 33(2):92-9. PubMed ID: 9506896 [TBL] [Abstract][Full Text] [Related]
18. Normal processing of AP sites in Apn1-deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III. Masson JY; Ramotar D Mol Microbiol; 1997 May; 24(4):711-21. PubMed ID: 9194699 [TBL] [Abstract][Full Text] [Related]
19. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. Boiteux S; Guillet M DNA Repair (Amst); 2004 Jan; 3(1):1-12. PubMed ID: 14697754 [TBL] [Abstract][Full Text] [Related]
20. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Wu X; Wang Z Nucleic Acids Res; 1999 Feb; 27(4):956-62. PubMed ID: 9927726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]