These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14697850)

  • 1. Spinal fusion surgery: animal models for tissue-engineered bone constructs.
    Khan SN; Lane JM
    Biomaterials; 2004 Apr; 25(9):1475-85. PubMed ID: 14697850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds.
    Kruyt MC; van Gaalen SM; Oner FC; Verbout AJ; de Bruijn JD; Dhert WJ
    Biomaterials; 2004 Apr; 25(9):1463-73. PubMed ID: 14697849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal tissue engineering-from in vitro studies to large animal models.
    Buma P; Schreurs W; Verdonschot N
    Biomaterials; 2004 Apr; 25(9):1487-95. PubMed ID: 14697851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progenitor cells: role and usage in bone tissue engineering approaches for spinal fusion.
    Nguyen LH; Duenas V; Chen MY; Jandial R
    Adv Exp Med Biol; 2012; 760():188-210. PubMed ID: 23281521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Tissue engineering of bone tissue. Principles and clinical applications].
    Schmidt-Rohlfing B; Tzioupis C; Menzel CL; Pape HC
    Unfallchirurg; 2009 Sep; 112(9):785-94; quiz 795. PubMed ID: 19756458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone repair in the twenty-first century: biology, chemistry or engineering?
    Hing KA
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2821-50. PubMed ID: 15539372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in engineering large customized bone constructs.
    Forrestal DP; Klein TJ; Woodruff MA
    Biotechnol Bioeng; 2017 Jun; 114(6):1129-1139. PubMed ID: 27858993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Update on bone morphogenetic proteins and their application in spine surgery.
    Samartzis D; Khanna N; Shen FH; An HS
    J Am Coll Surg; 2005 Feb; 200(2):236-48. PubMed ID: 15664100
    [No Abstract]   [Full Text] [Related]  

  • 10. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioreactors for bone tissue engineering.
    El Haj AJ; Cartmell SH
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1523-32. PubMed ID: 21287835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone generation on PHBV matrices: an in vitro study.
    Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V
    Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What bone graft substitutes should we use in post-traumatic spinal fusion?
    Guerado E; Fuerstenberg CH
    Injury; 2011 Sep; 42 Suppl 2():S64-71. PubMed ID: 21839997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spinal fusion of lumbar intertransverse process by using tissue engineered bone with xenogeneic deproteinized cancellous bone as scaffold].
    Gao C; Li Q; Jian Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):115-9. PubMed ID: 17357455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages.
    Li S; Huan Y; Zhu B; Chen H; Tang M; Yan Y; Wang C; Ouyang Z; Li X; Xue J; Wang W
    J Mater Sci Mater Med; 2021 Dec; 33(1):2. PubMed ID: 34940930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re: Kim DH, Jahng TA, Fu T-S, et al. Evaluation of HealosMP52 osteoinductive bone graft for instrumented lumbar intertransverse process fusion in sheep. Spine 2004;29;2800-8.
    Burkus JK
    Spine (Phila Pa 1976); 2005 Jun; 30(11):1342-3; author reply 1343-4. PubMed ID: 15928564
    [No Abstract]   [Full Text] [Related]  

  • 19. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses.
    Clough BH; McNeill EP; Palmer D; Krause U; Bartosh TJ; Chaput CD; Gregory CA
    Spine J; 2017 Mar; 17(3):418-430. PubMed ID: 27765715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoinductive bone graft substitutes for spinal fusion: a basic science summary.
    Ludwig SC; Boden SD
    Orthop Clin North Am; 1999 Oct; 30(4):635-45. PubMed ID: 10471768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.