These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14697850)

  • 21. Bone grafting.
    Zipfel GJ; Guiot BH; Fessler RG
    Neurosurg Focus; 2003 Feb; 14(2):e8. PubMed ID: 15727429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manufacture of degradable polymeric scaffolds for bone regeneration.
    Ge Z; Jin Z; Cao T
    Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of BMP-2 and combined IGF-I/TGF-ss1 application in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Knispel C; Hiller T; Schollmeier G; Bail H; Schmidmaier G; Duda G; Raschke M; Haas NP
    Eur Spine J; 2002 Oct; 11(5):482-93. PubMed ID: 12384758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bioactive titanium foam scaffold for bone repair.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    Acta Biomater; 2005 Sep; 1(5):523-33. PubMed ID: 16701832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes.
    Ge Z; Baguenard S; Lim LY; Wee A; Khor E
    Biomaterials; 2004 Mar; 25(6):1049-58. PubMed ID: 14615170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.
    Lovati AB; Lopa S; Recordati C; Talò G; Turrisi C; Bottagisio M; Losa M; Scanziani E; Moretti M
    Calcif Tissue Int; 2016 Aug; 99(2):209-23. PubMed ID: 27075029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model.
    Qian Y; Lin Z; Chen J; Fan Y; Davey T; Cake M; Day R; Dai K; Xu J; Zheng M
    Tissue Eng Part A; 2009 Nov; 15(11):3547-58. PubMed ID: 19459781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.
    Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW
    Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transplantation of cultured bone cells using combinations of scaffolds and culture techniques.
    Uemura T; Dong J; Wang Y; Kojima H; Saito T; Iejima D; Kikuchi M; Tanaka J; Tateishi T
    Biomaterials; 2003 Jun; 24(13):2277-86. PubMed ID: 12699664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone regeneration strategies: current trends but what the future holds?
    Giannoudis PV; Calori GM; Begue T; Schmidmaier G
    Injury; 2013 Jan; 44 Suppl 1():S1-2. PubMed ID: 23351862
    [No Abstract]   [Full Text] [Related]  

  • 31. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material.
    Walboomers XF; Jansen JA
    Biomaterials; 2005 Aug; 26(23):4779-85. PubMed ID: 15763257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficacy of tissue engineered bone grafts containing mesenchymal stromal cells for cleft alveolar osteoplasty in a rat model.
    Korn P; Schulz MC; Range U; Lauer G; Pradel W
    J Craniomaxillofac Surg; 2014 Oct; 42(7):1277-85. PubMed ID: 24831850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of fibronectin on osteoinductive capability of fresh iliac bone marrow aspirate in posterolateral spinal fusion in rabbits.
    Koga A; Tokuhashi Y; Ohkawa A; Nishimura T; Takayama K; Ryu J
    Spine (Phila Pa 1976); 2008 May; 33(12):1318-23. PubMed ID: 18496343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation.
    Nakajima T; Iizuka H; Tsutsumi S; Kayakabe M; Takagishi K
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2432-6. PubMed ID: 18090081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomaterials and Bioactive Agents in Spinal Fusion.
    Duarte RM; Varanda P; Reis RL; Duarte ARC; Correia-Pinto J
    Tissue Eng Part B Rev; 2017 Dec; 23(6):540-551. PubMed ID: 28514897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid and complete cellularization of hydroxyapatite for bone tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Acta Biomater; 2005 Sep; 1(5):545-52. PubMed ID: 16701834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats.
    Kruyt MC; Dhert WJ; Oner FC; van Blitterswijk CA; Verbout AJ; de Bruijn JD
    Biomaterials; 2007 Apr; 28(10):1798-805. PubMed ID: 17182096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced spinal fusion using a biodegradable porous mesh container in a rat posterolateral spinal fusion model.
    Shin DA; Yang BM; Tae G; Kim YH; Kim HS; Kim HI
    Spine J; 2014 Mar; 14(3):408-15. PubMed ID: 24268394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing spinal fusion.
    Benzel EC; Gilbertson L; Mericle RA
    Clin Neurosurg; 2008; 55():63-71. PubMed ID: 19248669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.