These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14698244)

  • 1. Optimum separation condition of peptides in reversed-phase liquid chromatography.
    Lee SK; Row KH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):115-20. PubMed ID: 14698244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimum separation conditions of catechin compounds by HCI program in reversed-phase high performance liquid chromatography].
    Jin Y; Row KH
    Se Pu; 2006 Sep; 24(5):466-70. PubMed ID: 17165539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography.
    Åsberg D; Langborg Weinmann A; Leek T; Lewis RJ; Klarqvist M; Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1496():80-91. PubMed ID: 28363419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited.
    Chen Y; Mehok AR; Mant CT; Hodges RS
    J Chromatogr A; 2004 Jul; 1043(1):9-18. PubMed ID: 15317407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic interpretation of the drift and noise of gradient baselines in reversed-phase liquid chromatography using mobile phase additives.
    Gritti F
    J Chromatogr A; 2020 Dec; 1633():461605. PubMed ID: 33128973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.
    Zhao YG; Chen XH; Yao SS; Pan SD; Li XP; Jin MC
    Anal Sci; 2012; 28(10):967-71. PubMed ID: 23059992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative mobile phases for the reversed-phase high-performance liquid chromatography of peptides and proteins.
    Welinder BS; Sørensen HH
    J Chromatogr; 1991 Jan; 537(1-2):181-99. PubMed ID: 2050779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfluorinated acid alternatives to trifluoroacetic acid for reversed-phase high-performance liquid chromatography.
    Pearson JD; McCroskey MC
    J Chromatogr A; 1996 Oct; 746(2):277-81. PubMed ID: 8916558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation.
    Marchetti N; Guiochon G
    Anal Chem; 2005 Jun; 77(11):3425-30. PubMed ID: 15924371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2005 Mar; 1068(2):279-87. PubMed ID: 15830934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography.
    De Luca C; Felletti S; Macis M; Cabri W; Lievore G; Chenet T; Pasti L; Morbidelli M; Cavazzini A; Catani M; Ricci A
    J Chromatogr A; 2020 Apr; 1616():460789. PubMed ID: 31874699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative gradient elution chromatography of chemotactic peptides.
    Kim B; Velayudhan A
    J Chromatogr A; 1998 Feb; 796(1):195-209. PubMed ID: 9513293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography.
    Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A
    J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection.
    Tomlinson AJ; Chicz RM
    Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions.
    Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T
    J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of mobile phase in high-performance liquid chromatographic determination for medicines.
    Sugiyama T; Matsuyama R; Usui S; Katagiri Y; Hirano K
    Biol Pharm Bull; 2000 Mar; 23(3):274-8. PubMed ID: 10726878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.