These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14698299)

  • 41. Structure, stability, and aggregation of β-2 microglobulin mutants: insights from a Fourier transform infrared study in solution and in the crystalline state.
    Ami D; Ricagno S; Bolognesi M; Bellotti V; Doglia SM; Natalello A
    Biophys J; 2012 Apr; 102(7):1676-84. PubMed ID: 22500768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MHC class I recognition by NK receptors in the Ly49 family is strongly influenced by the beta 2-microglobulin subunit.
    Michaëlsson J; Achour A; Rölle A; Kärre K
    J Immunol; 2001 Jun; 166(12):7327-34. PubMed ID: 11390483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Residue 3 of beta2-microglobulin affects binding of class I MHC molecules by the W6/32 antibody.
    Ladasky JJ; Shum BP; Canavez F; Seuánez HN; Parham P
    Immunogenetics; 1999 Apr; 49(4):312-20. PubMed ID: 10079295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A beta2-microglobulin cleavage variant fibrillates at near-physiological pH.
    Corlin DB; Johnsen CK; Nissen MH; Heegaard NH
    Biochem Biophys Res Commun; 2009 Apr; 381(2):187-91. PubMed ID: 19232323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State.
    Visconti L; Malagrinò F; Broggini L; De Luca CMG; Moda F; Gianni S; Ricagno S; Toto A
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant.
    Domanska K; Vanderhaegen S; Srinivasan V; Pardon E; Dupeux F; Marquez JA; Giorgetti S; Stoppini M; Wyns L; Bellotti V; Steyaert J
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1314-9. PubMed ID: 21220305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy.
    Barbet-Massin E; Ricagno S; Lewandowski JR; Giorgetti S; Bellotti V; Bolognesi M; Emsley L; Pintacuda G
    J Am Chem Soc; 2010 Apr; 132(16):5556-7. PubMed ID: 20356307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation of pH-dependent edge strand rearrangement in human beta-2 microglobulin.
    Park S; Saven JG
    Protein Sci; 2006 Jan; 15(1):200-7. PubMed ID: 16322574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural analysis of H2-Db class I molecules containing two different allelic forms of the type 1 diabetes susceptibility factor beta-2 microglobulin: implications for the mechanism underlying variations in antigen presentation.
    Roden MM; Brims DR; Fedorov AA; DiLorenzo TP; Almo SC; Nathenson SG
    Mol Immunol; 2006 Mar; 43(9):1370-8. PubMed ID: 16229893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uncovering Structural and Molecular Dynamics of ESAT-6:β2M Interaction: Asp53 of Human β2-Microglobulin Is Critical for the ESAT-6:β2M Complexation.
    Jha V; Rameshwaram NR; Janardhan S; Raman R; Sastry GN; Sharma V; Subba Rao J; Kumar D; Mukhopadhyay S
    J Immunol; 2019 Oct; 203(7):1918-1929. PubMed ID: 31484733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impaired assembly results in the accumulation of multiple HLA-C heavy chain folding intermediates.
    Sibilio L; Martayan A; Setini A; Fraioli R; Fruci D; Shabanowitz J; Hunt DF; Giacomini P
    J Immunol; 2005 Nov; 175(10):6651-8. PubMed ID: 16272320
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduction of conformational mobility and aggregation in W60G β2-microglobulin: assessment by 15N NMR relaxation.
    Gümral D; Fogolari F; Corazza A; Viglino P; Giorgetti S; Stoppini M; Bellotti V; Esposito G
    Magn Reson Chem; 2013 Dec; 51(12):795-807. PubMed ID: 24136818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decoding the Structural Bases of D76N ß2-Microglobulin High Amyloidogenicity through Crystallography and Asn-Scan Mutagenesis.
    de Rosa M; Barbiroli A; Giorgetti S; Mangione PP; Bolognesi M; Ricagno S
    PLoS One; 2015; 10(12):e0144061. PubMed ID: 26625273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of lysophosphatidic acid-induced amyloid fibril formation of beta(2)-microglobulin in vitro under physiological conditions.
    Pál-Gábor H; Gombos L; Micsonai A; Kovács E; Petrik E; Kovács J; Gráf L; Fidy J; Naiki H; Goto Y; Liliom K; Kardos J
    Biochemistry; 2009 Jun; 48(24):5689-99. PubMed ID: 19432419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-resolution crystal structure of beta2-microglobulin formed at pH 7.0.
    Iwata K; Matsuura T; Sakurai K; Nakagawa A; Goto Y
    J Biochem; 2007 Sep; 142(3):413-9. PubMed ID: 17646174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of β2-microglobulin conformational intermediates associated to different fibrillation conditions.
    Santambrogio C; Ricagno S; Sobott F; Colombo M; Bolognesi M; Grandori R
    J Mass Spectrom; 2011 Aug; 46(8):734-41. PubMed ID: 21766392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry.
    Leney AC; Pashley CL; Scarff CA; Radford SE; Ashcroft AE
    Mol Biosyst; 2014 Mar; 10(3):412-20. PubMed ID: 24336936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.
    Kumar S; Sharma P; Arora K; Raje M; Guptasarma P
    PLoS One; 2014; 9(4):e95725. PubMed ID: 24755626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of mutation on an aggregation-prone protein: An in vivo, in vitro, and in silico analysis.
    Guthertz N; van der Kant R; Martinez RM; Xu Y; Trinh CH; Iorga BI; Rousseau F; Schymkowitz J; Brockwell DJ; Radford SE
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2200468119. PubMed ID: 35613051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.
    Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y
    J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.