BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14698458)

  • 1. Distinct regions of periaqueductal gray (PAG) are involved in freezing behavior in hooded PVG rats on the cat-freezing test apparatus.
    Farook JM; Wang Q; Moochhala SM; Zhu ZY; Lee L; Wong PT
    Neurosci Lett; 2004 Jan; 354(2):139-42. PubMed ID: 14698458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defensive freezing evoked by electrical stimulation of the periaqueductal gray: comparison between dorsolateral and ventrolateral regions.
    Vianna DM; Graeff FG; Brandão ML; Landeira-Fernandez J
    Neuroreport; 2001 Dec; 12(18):4109-12. PubMed ID: 11742247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats.
    Ferreira-Netto C; Borelli KG; Brandão ML
    Brain Res; 2005 Jan; 1031(2):151-63. PubMed ID: 15649440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear.
    Vianna DM; Landeira-Fernandez J; Brandão ML
    Neurosci Biobehav Rev; 2001 Dec; 25(7-8):711-9. PubMed ID: 11801296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amygdala and periaqueductal gray lesions only partially attenuate unconditional defensive responses in rats exposed to a cat.
    de Oca BM; Fanselow MS
    Integr Physiol Behav Sci; 2004; 39(4):318-33. PubMed ID: 16295774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses.
    De Oca BM; DeCola JP; Maren S; Fanselow MS
    J Neurosci; 1998 May; 18(9):3426-32. PubMed ID: 9547249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CCK2 agonist BC264 reverses freezing behavior habituation in PVG hooded rats on repeated exposures to a cat.
    Farook JM; McLachlan CS; Zhu YZ; Lee L; Moochhala SM; Wong PT
    Neurosci Lett; 2004 Jan; 355(3):205-8. PubMed ID: 14732467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray.
    Assareh N; Sarrami M; Carrive P; McNally GP
    Behav Neurosci; 2016 Aug; 130(4):406-14. PubMed ID: 27243807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats.
    Lim LW; Temel Y; Sesia T; Vlamings R; Visser-Vandewalle V; Steinbusch HW; Blokland A
    Neuroscience; 2008 Jul; 155(1):164-73. PubMed ID: 18588948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear.
    Vianna DM; Brandão ML
    Braz J Med Biol Res; 2003 May; 36(5):557-66. PubMed ID: 12715074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of angiotensin (5-8) microinfusions into the ventrolateral periaqueductal gray on defensive behaviors in rats.
    Genaro K; Juliano MA; Prado WA; Brandão ML; Martins AR
    Behav Brain Res; 2013 Nov; 256():537-44. PubMed ID: 24041538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link.
    Koutsikou S; Crook JJ; Earl EV; Leith JL; Watson TC; Lumb BM; Apps R
    J Physiol; 2014 May; 592(10):2197-213. PubMed ID: 24639484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray.
    Borelli KG; Ferreira-Netto C; Coimbra NC; Brandão ML
    Brain Res; 2005 Jul; 1051(1-2):100-11. PubMed ID: 15996642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation.
    Yeh LF; Ozawa T; Johansen JP
    Mol Brain; 2021 Sep; 14(1):136. PubMed ID: 34496926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats.
    Koba S; Inoue R; Watanabe T
    Physiol Rep; 2016 Jun; 4(12):. PubMed ID: 27335434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat.
    Hammer GD; Kapp BS
    Behav Neural Biol; 1986 Sep; 46(2):189-95. PubMed ID: 3767831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis.
    Koutsikou S; Watson TC; Crook JJ; Leith JL; Lawrenson CL; Apps R; Lumb BM
    J Neurosci; 2015 Oct; 35(42):14132-47. PubMed ID: 26490855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization.
    La-Vu MQ; Sethi E; Maesta-Pereira S; Schuette PJ; Tobias BC; Reis FMCV; Wang W; Torossian A; Bishop A; Leonard SJ; Lin L; Cahill CM; Adhikari A
    Elife; 2022 Jun; 11():. PubMed ID: 35674316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator.
    Aguiar DC; Guimarães FS
    J Neurosci Res; 2009 Aug; 87(11):2418-29. PubMed ID: 19360885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.