These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 14698458)
1. Distinct regions of periaqueductal gray (PAG) are involved in freezing behavior in hooded PVG rats on the cat-freezing test apparatus. Farook JM; Wang Q; Moochhala SM; Zhu ZY; Lee L; Wong PT Neurosci Lett; 2004 Jan; 354(2):139-42. PubMed ID: 14698458 [TBL] [Abstract][Full Text] [Related]
2. Defensive freezing evoked by electrical stimulation of the periaqueductal gray: comparison between dorsolateral and ventrolateral regions. Vianna DM; Graeff FG; Brandão ML; Landeira-Fernandez J Neuroreport; 2001 Dec; 12(18):4109-12. PubMed ID: 11742247 [TBL] [Abstract][Full Text] [Related]
3. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351 [TBL] [Abstract][Full Text] [Related]
4. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats. Ferreira-Netto C; Borelli KG; Brandão ML Brain Res; 2005 Jan; 1031(2):151-63. PubMed ID: 15649440 [TBL] [Abstract][Full Text] [Related]
5. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Vianna DM; Landeira-Fernandez J; Brandão ML Neurosci Biobehav Rev; 2001 Dec; 25(7-8):711-9. PubMed ID: 11801296 [TBL] [Abstract][Full Text] [Related]
6. Amygdala and periaqueductal gray lesions only partially attenuate unconditional defensive responses in rats exposed to a cat. de Oca BM; Fanselow MS Integr Physiol Behav Sci; 2004; 39(4):318-33. PubMed ID: 16295774 [TBL] [Abstract][Full Text] [Related]
7. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. De Oca BM; DeCola JP; Maren S; Fanselow MS J Neurosci; 1998 May; 18(9):3426-32. PubMed ID: 9547249 [TBL] [Abstract][Full Text] [Related]
8. The CCK2 agonist BC264 reverses freezing behavior habituation in PVG hooded rats on repeated exposures to a cat. Farook JM; McLachlan CS; Zhu YZ; Lee L; Moochhala SM; Wong PT Neurosci Lett; 2004 Jan; 355(3):205-8. PubMed ID: 14732467 [TBL] [Abstract][Full Text] [Related]
9. The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. Assareh N; Sarrami M; Carrive P; McNally GP Behav Neurosci; 2016 Aug; 130(4):406-14. PubMed ID: 27243807 [TBL] [Abstract][Full Text] [Related]
10. Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats. Lim LW; Temel Y; Sesia T; Vlamings R; Visser-Vandewalle V; Steinbusch HW; Blokland A Neuroscience; 2008 Jul; 155(1):164-73. PubMed ID: 18588948 [TBL] [Abstract][Full Text] [Related]
11. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Vianna DM; Brandão ML Braz J Med Biol Res; 2003 May; 36(5):557-66. PubMed ID: 12715074 [TBL] [Abstract][Full Text] [Related]
12. Effects of angiotensin (5-8) microinfusions into the ventrolateral periaqueductal gray on defensive behaviors in rats. Genaro K; Juliano MA; Prado WA; Brandão ML; Martins AR Behav Brain Res; 2013 Nov; 256():537-44. PubMed ID: 24041538 [TBL] [Abstract][Full Text] [Related]
14. Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray. Borelli KG; Ferreira-Netto C; Coimbra NC; Brandão ML Brain Res; 2005 Jul; 1051(1-2):100-11. PubMed ID: 15996642 [TBL] [Abstract][Full Text] [Related]
16. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats. Koba S; Inoue R; Watanabe T Physiol Rep; 2016 Jun; 4(12):. PubMed ID: 27335434 [TBL] [Abstract][Full Text] [Related]
17. The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat. Hammer GD; Kapp BS Behav Neural Biol; 1986 Sep; 46(2):189-95. PubMed ID: 3767831 [TBL] [Abstract][Full Text] [Related]
18. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis. Koutsikou S; Watson TC; Crook JJ; Leith JL; Lawrenson CL; Apps R; Lumb BM J Neurosci; 2015 Oct; 35(42):14132-47. PubMed ID: 26490855 [TBL] [Abstract][Full Text] [Related]
19. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. La-Vu MQ; Sethi E; Maesta-Pereira S; Schuette PJ; Tobias BC; Reis FMCV; Wang W; Torossian A; Bishop A; Leonard SJ; Lin L; Cahill CM; Adhikari A Elife; 2022 Jun; 11():. PubMed ID: 35674316 [TBL] [Abstract][Full Text] [Related]
20. Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator. Aguiar DC; Guimarães FS J Neurosci Res; 2009 Aug; 87(11):2418-29. PubMed ID: 19360885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]