BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14698764)

  • 21. Sensorimotor processing in the newborn rat red nucleus during active sleep.
    Del Rio-Bermudez C; Sokoloff G; Blumberg MS
    J Neurosci; 2015 May; 35(21):8322-32. PubMed ID: 26019345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats.
    Kostin A; McGinty D; Szymusiak R; Alam MN
    Neuroscience; 2013 Dec; 254():275-84. PubMed ID: 24056193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wake-related activity of tuberomammillary neurons in rats.
    Ko EM; Estabrooke IV; McCarthy M; Scammell TE
    Brain Res; 2003 Dec; 992(2):220-6. PubMed ID: 14625060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breathing During Sleep in the Postnatal Period of Rats: The Contribution of Active Expiration.
    Saini JK; Pagliardini S
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29294135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.
    Diniz Behn CG; Booth V
    J Neurophysiol; 2010 Apr; 103(4):1937-53. PubMed ID: 20107121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal interneuron activity in unanesthetized rats: relationship to the sleep-wake cycle.
    Prospéro-García O; Miller DR; Henriksen SJ
    Neurosci Lett; 1993 Jun; 156(1-2):158-62. PubMed ID: 8414179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brainstem cholinergic modulation of muscle tone in infant rats.
    Gall AJ; Poremba A; Blumberg MS
    Eur J Neurosci; 2007 Jun; 25(11):3367-75. PubMed ID: 17553005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesopontine contribution to the expression of active 'twitch' sleep in decerebrate week-old rats.
    Kreider JC; Blumberg MS
    Brain Res; 2000 Jul; 872(1-2):149-59. PubMed ID: 10924687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus.
    Methippara MM; Alam MN; Szymusiak R; McGinty D
    Brain Res; 2003 Jan; 960(1-2):165-73. PubMed ID: 12505669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of extrahypothalamic neurons to short temperature transients during the ultradian wake-sleep cycle.
    Cevolani D; Parmeggiani PL
    Brain Res Bull; 1995; 37(3):227-32. PubMed ID: 7627565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of sleep-wake cyclicity in developing rats.
    Blumberg MS; Seelke AM; Lowen SB; Karlsson KA
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14860-4. PubMed ID: 16192355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet.
    Luppi M; Cerri M; Martelli D; Tupone D; Del Vecchio F; Di Cristoforo A; Perez E; Zamboni G; Amici R
    Behav Brain Res; 2014 Jan; 258():145-52. PubMed ID: 24149066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced wakefulness following lesions of a mesopontine locus essential for the induction of general anesthesia.
    Lanir-Azaria S; Meiri G; Avigdor T; Minert A; Devor M
    Behav Brain Res; 2018 Apr; 341():198-211. PubMed ID: 29288749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brainstem and hypothalamic regulation of sleep pressure and rebound in newborn rats.
    Todd WD; Gibson JL; Shaw CS; Blumberg MS
    Behav Neurosci; 2010 Feb; 124(1):69-78. PubMed ID: 20141281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypothalamic osmoregulation is maintained across the wake-sleep cycle in the rat.
    Luppi M; Martelli D; Amici R; Baracchi F; Cerri M; Dentico D; Perez E; Zamboni G
    J Sleep Res; 2010 Sep; 19(3):394-9. PubMed ID: 20374448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.
    Schwartz MD; Nguyen AT; Warrier DR; Palmerston JB; Thomas AM; Morairty SR; Neylan TC; Kilduff TS
    eNeuro; 2016; 3(2):. PubMed ID: 27022631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.