These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 14698878)

  • 1. Physicochemical studies of pectin/poly-L-lysine gelation.
    Marudova M; MacDougall AJ; Ring SG
    Carbohydr Res; 2004 Jan; 339(2):209-16. PubMed ID: 14698878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pectin-chitosan interactions and gel formation.
    Marudova M; MacDougall AJ; Ring SG
    Carbohydr Res; 2004 Aug; 339(11):1933-9. PubMed ID: 15261586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of peptide-pectin interactions on the gelation behaviour of a plant cell wall pectin.
    MacDougall AJ; Brett GM; Morris VJ; Rigby NM; Ridout MJ; Ring SG
    Carbohydr Res; 2001 Sep; 335(2):115-26. PubMed ID: 11567642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelling properties of lysine-amidated citrus pectins: The key role of pH in both amidation and gelation.
    Wang J; Zhao C; Zhao S; Lu X; Ma M; Zheng J
    Carbohydr Polym; 2023 Oct; 317():121087. PubMed ID: 37364957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling-shrinking behavior of chemically cross-linked polypeptide gels from poly(α-L-lysine), poly(α-DL-lysine), poly(ɛ-L-lysine) and thermally prepared poly(lysine): effects of pH, temperature and additives in the solution.
    Kokufuta MK; Sato S; Kokufuta E
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):299-309. PubMed ID: 21684127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calcium, pH, and blockiness on kinetic rheological behavior and microstructure of HM pectin gels.
    Löfgren C; Guillotin S; Evenbratt H; Schols H; Hermansson AM
    Biomacromolecules; 2005; 6(2):646-52. PubMed ID: 15762625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectin as a rheology modifier: Origin, structure, commercial production and rheology.
    Chan SY; Choo WS; Young DJ; Loh XJ
    Carbohydr Polym; 2017 Apr; 161():118-139. PubMed ID: 28189220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.
    Lopez-Pena CL; McClements DJ
    Food Chem; 2014 Jun; 153():9-14. PubMed ID: 24491693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ gelling pectin formulations for oral drug delivery at high gastric pH.
    Itoh K; Hirayama T; Takahashi A; Kubo W; Miyazaki S; Dairaku M; Togashi M; Mikami R; Attwood D
    Int J Pharm; 2007 Apr; 335(1-2):90-96. PubMed ID: 17141988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pectin extraction from lemon by-product with acidified date juice: rheological properties and microstructure of pure and mixed pectin gels.
    Masmoudi M; Besbes S; Ben Thabet I; Blecker C; Attia H
    Food Sci Technol Int; 2010 Apr; 16(2):105-14. PubMed ID: 21339126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of pectin/poly-L-lysine multilayers with pectins of varying degrees of esterification.
    Krzeminski A; Marudova M; Moffat J; Noel TR; Parker R; Wellner N; Ring SG
    Biomacromolecules; 2006 Feb; 7(2):498-506. PubMed ID: 16471922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM.
    Fishman ML; Cooke PH
    Carbohydr Res; 2009 Sep; 344(14):1792-7. PubMed ID: 19111283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and swelling properties of composite gel microparticles based on alginate and callus cultures pectins with low and high degrees of methylesterification.
    Günter EA; Popeyko OV; Belozerov VS; Martinson EA; Litvinets SG
    Int J Biol Macromol; 2020 Dec; 164():863-870. PubMed ID: 32707284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.
    Moreira HR; Munarin F; Gentilini R; Visai L; Granja PL; Tanzi MC; Petrini P
    Carbohydr Polym; 2014 Mar; 103():339-47. PubMed ID: 24528738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monovalent salt-induced gelation of enzymatically deesterified pectin.
    Yoo SH; Fishman ML; Savary BJ; Hotchkiss AT
    J Agric Food Chem; 2003 Dec; 51(25):7410-7. PubMed ID: 14640592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and kinetic rheological behavior of amidated and nonamidated LM pectin gels.
    Löfgren C; Guillotin S; Hermansson AM
    Biomacromolecules; 2006 Jan; 7(1):114-21. PubMed ID: 16398505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning surface by site selective capture of biopolymer hydrogel beads.
    Guyomard-Lack A; Moreau C; Delorme N; Marquis M; Fang A; Bardeau JF; Cathala B
    Colloids Surf B Biointerfaces; 2012 Jun; 94():369-73. PubMed ID: 22326339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin.
    Kastner H; Kern K; Wilde R; Berthold A; Einhorn-Stoll U; Drusch S
    Food Chem; 2014 Feb; 144():44-9. PubMed ID: 24099540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intragastric gelation of whey protein-pectin alters the digestibility of whey protein during in vitro pepsin digestion.
    Zhang S; Vardhanabhuti B
    Food Funct; 2014 Jan; 5(1):102-10. PubMed ID: 24284478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and rupture of Ca(2+) induced pectin biopolymer gels.
    Basak R; Bandyopadhyay R
    Soft Matter; 2014 Oct; 10(37):7225-33. PubMed ID: 25160564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.