BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14699036)

  • 1. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis.
    Keller MD; Majumder SK; Kelley MC; Meszoely IM; Boulos FI; Olivares GM; Mahadevan-Jansen A
    Lasers Surg Med; 2010 Jan; 42(1):15-23. PubMed ID: 20077490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.
    Volynskaya Z; Haka AS; Bechtel KL; Fitzmaurice M; Shenk R; Wang N; Nazemi J; Dasari RR; Feld MS
    J Biomed Opt; 2008; 13(2):024012. PubMed ID: 18465975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions.
    Chowdary MV; Mahato KK; Kumar KK; Mathew S; Rao L; Krishna CM; Kurien J
    Photomed Laser Surg; 2009 Apr; 27(2):241-52. PubMed ID: 19382834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.
    Parekh DJ; Lin WC; Herrell SD
    J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis.
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1072-8. PubMed ID: 16512551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast.
    Zhu C; Burnside ES; Sisney GA; Salkowski LR; Harter JM; Yu B; Ramanujam N
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2518-28. PubMed ID: 19272976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
    Ebenezar J; Pu Y; Liu CH; Wang WB; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):153-61. PubMed ID: 21381793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    J Biomed Opt; 2004; 9(5):940-50. PubMed ID: 15447015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance.
    Amouroux M; Díaz-Ayil G; Blondel WC; Bourg-Heckly G; Leroux A; Guillemin F
    J Biomed Opt; 2009; 14(1):014011. PubMed ID: 19256699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model based and empirical spectral analysis for the diagnosis of breast cancer.
    Zhu C; Breslin TM; Harter J; Ramanujam N
    Opt Express; 2008 Sep; 16(19):14961-78. PubMed ID: 18795033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV reflectance spectroscopy probes DNA and protein changes in human breast tissues.
    Yang Y; Celmer EJ; Koutcher JA; Alfano RR
    J Clin Laser Med Surg; 2001 Feb; 19(1):35-9. PubMed ID: 11547817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autofluorescence and diffuse reflectance spectroscopy for oral oncology.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    Lasers Surg Med; 2005 Jun; 36(5):356-64. PubMed ID: 15856507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and fluorophores: study on neoplastic human brain lesions.
    Nazeer SS; Saraswathy A; Gupta AK; Jayasree RS
    J Biomed Opt; 2013 Jun; 18(6):067002. PubMed ID: 23733026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.