BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14699036)

  • 41. [Application of support vector machine-recursive feature elimination algorithm in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases].
    Zhang H; Fu T; Zhang Z; Fan Z; Zheng C; Han B
    Zhonghua Zhong Liu Za Zhi; 2014 Aug; 36(8):582-6. PubMed ID: 25430023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breast tissue analysis using a clinically compatible combined time-resolved fluorescence and diffuse reflectance (TRF-DR) system.
    Dao E; Gohla G; Williams P; Lovrics P; Badr F; Fang Q; Farrell T; Farquharson M
    Lasers Surg Med; 2023 Oct; 55(8):769-783. PubMed ID: 37526280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues.
    Luo XJ; Zhang B; Li JG; Luo XA; Yang LF
    Z Med Phys; 2012 Feb; 22(1):40-7. PubMed ID: 22112637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue.
    Majumder SK; Ghosh N; Gupta PK
    J Photochem Photobiol B; 2005 Oct; 81(1):33-42. PubMed ID: 16107317
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence.
    Gillenwater A; Jacob R; Ganeshappa R; Kemp B; El-Naggar AK; Palmer JL; Clayman G; Mitchell MF; Richards-Kortum R
    Arch Otolaryngol Head Neck Surg; 1998 Nov; 124(11):1251-8. PubMed ID: 9821929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergy of Fluorescence and Near-Infrared Spectroscopy in Detection of Colorectal Cancer.
    Ehlen L; Zabarylo UJ; Speichinger F; Bogomolov A; Belikova V; Bibikova O; Artyushenko V; Minet O; Beyer K; Kreis ME; Kamphues C
    J Surg Res; 2019 Oct; 242():349-356. PubMed ID: 31132626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of optical spectroscopy in epilepsy surgery in children.
    Bhatia S; Ragheb J; Johnson M; Oh S; Sandberg DI; Lin WC
    Neurosurg Focus; 2008 Sep; 25(3):E24. PubMed ID: 18759626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues.
    Gupta S; Nair MS; Pradhan A; Biswal NC; Agarwal N; Agarwal A; Panigrahi PK
    J Biomed Opt; 2005; 10(5):054012. PubMed ID: 16292972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions?
    Aboumarzouk O; Valentine R; Buist R; Ahmad S; Nabi G; Eljamel S; Moseley H; Kata SG
    Photodiagnosis Photodyn Ther; 2015 Mar; 12(1):76-83. PubMed ID: 25560417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Classification of in vivo autofluorescence spectra using support vector machines.
    Lin W; Yuan X; Yuen P; Wei WI; Sham J; Shi P; Qu J
    J Biomed Opt; 2004; 9(1):180-6. PubMed ID: 14715071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diagnosis of oral cancer by light-induced autofluorescence spectroscopy using double excitation wavelengths.
    Wang CY; Chiang HK; Chen CT; Chiang CP; Kuo YS; Chow SN
    Oral Oncol; 1999 Mar; 35(2):144-50. PubMed ID: 10435148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy.
    Chowdary MV; Kumar KK; Kurien J; Mathew S; Krishna CM
    Biopolymers; 2006 Dec; 83(5):556-69. PubMed ID: 16897764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Support Vector Machine on fluorescence landscapes for breast cancer diagnostics.
    Dramićanin T; Lenhardt L; Zeković I; Dramićanin MD
    J Fluoresc; 2012 Sep; 22(5):1281-9. PubMed ID: 22678149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study.
    Zlobina NV; Budylin GS; Tseregorodtseva PS; Andreeva VA; Sorokin NI; Kamalov DM; Strigunov AA; Armaganov AG; Kamalov AA; Shirshin EA
    Lasers Surg Med; 2024 Jul; 56(5):496-507. PubMed ID: 38650443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emission spectra of colonic tissue and endogenous fluorophores.
    Banerjee B; Miedema B; Chandrasekhar HR
    Am J Med Sci; 1998 Sep; 316(3):220-6. PubMed ID: 9749567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical spectroscopy detects histological hallmarks of pancreatic cancer.
    Wilson RH; Chandra M; Scheiman J; Simeone D; McKenna B; Purdy J; Mycek MA
    Opt Express; 2009 Sep; 17(20):17502-16. PubMed ID: 19907534
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain tumor demarcation using optical spectroscopy; an in vitro study.
    Lin WC; Toms SA; Motamedi M; Jansen ED; Mahadevan-Jansen A
    J Biomed Opt; 2000 Apr; 5(2):214-20. PubMed ID: 10938786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.